H. Mes-adi , M. Lablali , M. Ait ichou , K. Saadouni , M. Mazroui
{"title":"Strengthening mechanisms and deformation behavior of Au/Ag bilayer using nanoindentation","authors":"H. Mes-adi , M. Lablali , M. Ait ichou , K. Saadouni , M. Mazroui","doi":"10.1016/j.ssc.2025.115844","DOIUrl":null,"url":null,"abstract":"<div><div>Thin-film coatings of metals, particularly Gold (Au) and Silver (Ag), have proven to be highly promising for improving the performance and efficiency of micro/nano-electromechanical systems (MEMS/NEMS). This interest needs to explore their mechanical properties. Here, nanoindentation is used to investigate the details of deformation mechanisms and mechanical properties of Au coating film on Ag substrate using molecular dynamics (MD) simulations. The effects of coating Au thickness and indentation velocity on the indented Au/Ag bilayers are investigated by analyzing the load-displacement, hardness, structure and dislocation movement. Most interestingly, the results reveal that the Au/Ag bilayer exhibits significant strengthening when the thickness of the coating Au film is decreased. It is found that the values of force and hardness increase as the coating Au film thickness decreases. Based on extraction dislocations analysis (DXA), a large number of dislocations propagate through the interface when the Au film thickness is below 12 Å. In addition, the variation of indentation velocity shows a significant effect on the mechanical properties of Au/Ag bilayers. The Common Neighbor Analysis (CNA) demonstrates that more defects are generated during nanoindentation process. Accordingly, the force and hardness are found to increase with increasing indentation velocity.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"397 ","pages":"Article 115844"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825000195","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Thin-film coatings of metals, particularly Gold (Au) and Silver (Ag), have proven to be highly promising for improving the performance and efficiency of micro/nano-electromechanical systems (MEMS/NEMS). This interest needs to explore their mechanical properties. Here, nanoindentation is used to investigate the details of deformation mechanisms and mechanical properties of Au coating film on Ag substrate using molecular dynamics (MD) simulations. The effects of coating Au thickness and indentation velocity on the indented Au/Ag bilayers are investigated by analyzing the load-displacement, hardness, structure and dislocation movement. Most interestingly, the results reveal that the Au/Ag bilayer exhibits significant strengthening when the thickness of the coating Au film is decreased. It is found that the values of force and hardness increase as the coating Au film thickness decreases. Based on extraction dislocations analysis (DXA), a large number of dislocations propagate through the interface when the Au film thickness is below 12 Å. In addition, the variation of indentation velocity shows a significant effect on the mechanical properties of Au/Ag bilayers. The Common Neighbor Analysis (CNA) demonstrates that more defects are generated during nanoindentation process. Accordingly, the force and hardness are found to increase with increasing indentation velocity.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.