Dependence of structural, electrical, electronic and optical properties of lithium niobate on the types of pseudopotentials and exchange–correlation functionals: A DFT investigation
Abdellah Hbab, Lahcen Ait Lamine, Said Amounas, Hassan Chaib
{"title":"Dependence of structural, electrical, electronic and optical properties of lithium niobate on the types of pseudopotentials and exchange–correlation functionals: A DFT investigation","authors":"Abdellah Hbab, Lahcen Ait Lamine, Said Amounas, Hassan Chaib","doi":"10.1016/j.ssc.2025.115838","DOIUrl":null,"url":null,"abstract":"<div><div>Within the framework of density functional theory, we used different types of exchange–correlation functionals with the three existing types of pseudopotentials to study the structural, electrical, electronic and optical properties of lithium niobate in its ferroelectric phase. Among the types of exchange–correlation functionals implemented in Quantum Espresso, we considered twenty-eight types in the present study. The calculations show that, for all the magnitudes studied here, the calculated values depend on the type of the exchange–correlation functionals considered in the calculation. However, for a given type of functionals, the values obtained by using pseudopotentials of type USPP and those obtained by using pseudopotentials of type PAW are almost identical. In general, the results obtained by using pseudopotentials of types USPP and PAW are more satisfactory than those obtained using pseudopotentials of type NCPP, particularly for spontaneous polarization, energy band gap and refractive indices. However, it was found that the best values for these magnitudes, i.e. those with the smallest deviation from the corresponding measured values, were obtained by using exchange–correlation functionals of types HCTH and OLYP and pseudopotentials of types USPP and PAW. Finally, the study of the spectra of optical magnitudes shows that lithium niobate in its ferroelectric phase presents interesting absorption characteristics in the ultraviolet region of the spectrum, which make it suitable for use in the manufacture of ultraviolet detectors useful for several technological applications.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"397 ","pages":"Article 115838"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825000134","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Within the framework of density functional theory, we used different types of exchange–correlation functionals with the three existing types of pseudopotentials to study the structural, electrical, electronic and optical properties of lithium niobate in its ferroelectric phase. Among the types of exchange–correlation functionals implemented in Quantum Espresso, we considered twenty-eight types in the present study. The calculations show that, for all the magnitudes studied here, the calculated values depend on the type of the exchange–correlation functionals considered in the calculation. However, for a given type of functionals, the values obtained by using pseudopotentials of type USPP and those obtained by using pseudopotentials of type PAW are almost identical. In general, the results obtained by using pseudopotentials of types USPP and PAW are more satisfactory than those obtained using pseudopotentials of type NCPP, particularly for spontaneous polarization, energy band gap and refractive indices. However, it was found that the best values for these magnitudes, i.e. those with the smallest deviation from the corresponding measured values, were obtained by using exchange–correlation functionals of types HCTH and OLYP and pseudopotentials of types USPP and PAW. Finally, the study of the spectra of optical magnitudes shows that lithium niobate in its ferroelectric phase presents interesting absorption characteristics in the ultraviolet region of the spectrum, which make it suitable for use in the manufacture of ultraviolet detectors useful for several technological applications.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.