{"title":"Investigation of optical and thermodynamic characteristics of double transition metal YMX (M = Ti and Zr; X = C and N) MXenes","authors":"Zeynab Amoudeh, Peiman Amiri, Amir Aliakbari","doi":"10.1016/j.ssc.2024.115805","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the optical and thermodynamic characteristics of a novel solid solution comprising two different transition metals, YMX (M = Ti and Zr; X = C and N), which belong to the MXenes family. The calculations in this research employ density functional theory (DFT) combined with the pseudopotential technique. From the absorption spectrum, it can be inferred that the YMX MXenes exhibit photon absorption starting from zero photon energy, providing further evidence of the metallic characteristics of the YMX monolayers. Analysis of the results and graphs of L(ω) for YMN MXenes exhibit the strongest electron-photon interaction along the x-axis direction when compared to YMC MXenes, the sharp plasmonic peaks are as follows: YTiN (18.24 eV) > YZrN (17.63 eV) > YTiC (16.40 eV) > YZrC (7.76 eV). Utilizing the GGA + HSE06 method not only leads to a reduction in the absorption coefficient and optical conductivity of 2D YTiX and YZrX MXenes but also enables faster propagation of electromagnetic waves through these materials, particularly in the x-direction. Moreover, irrespective of the approximations used, YMX MXenes exhibit the highest absorption coefficient in the ultraviolet region of the electromagnetic spectrum, making them suitable candidates for use in optoelectronic devices. The progressive rise in entropy as temperature increases serves as robust evidence, affirming the endothermic characteristics exhibited by the studied MXenes. The replacement of carbon with nitrogen results in an increased Debye temperature. By considering the inverse correlation between Debye temperature <span><math><mrow><msub><mi>Θ</mi><mi>D</mi></msub></mrow></math></span> and heat capacity <span><math><mrow><msub><mi>C</mi><mi>v</mi></msub></mrow></math></span>, and analyzing the lattice constant of these compounds, it becomes clear that the YMN MXenes exhibit superior hardness in comparison to the YMC MXenes. This finding is particularly evident within the LDA approximation. Due to superior hardness and layered structure with the metallic nature, YMX MXenes present an ideal option for applications in electrical connections and as a protective coating that offers low friction properties. Furthermore, modifying the electronic band gap of 2D MXenes, along with ensuring their structural stability, could greatly enhance the application of these materials in optoelectronic devices.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"397 ","pages":"Article 115805"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003810982400382X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the optical and thermodynamic characteristics of a novel solid solution comprising two different transition metals, YMX (M = Ti and Zr; X = C and N), which belong to the MXenes family. The calculations in this research employ density functional theory (DFT) combined with the pseudopotential technique. From the absorption spectrum, it can be inferred that the YMX MXenes exhibit photon absorption starting from zero photon energy, providing further evidence of the metallic characteristics of the YMX monolayers. Analysis of the results and graphs of L(ω) for YMN MXenes exhibit the strongest electron-photon interaction along the x-axis direction when compared to YMC MXenes, the sharp plasmonic peaks are as follows: YTiN (18.24 eV) > YZrN (17.63 eV) > YTiC (16.40 eV) > YZrC (7.76 eV). Utilizing the GGA + HSE06 method not only leads to a reduction in the absorption coefficient and optical conductivity of 2D YTiX and YZrX MXenes but also enables faster propagation of electromagnetic waves through these materials, particularly in the x-direction. Moreover, irrespective of the approximations used, YMX MXenes exhibit the highest absorption coefficient in the ultraviolet region of the electromagnetic spectrum, making them suitable candidates for use in optoelectronic devices. The progressive rise in entropy as temperature increases serves as robust evidence, affirming the endothermic characteristics exhibited by the studied MXenes. The replacement of carbon with nitrogen results in an increased Debye temperature. By considering the inverse correlation between Debye temperature and heat capacity , and analyzing the lattice constant of these compounds, it becomes clear that the YMN MXenes exhibit superior hardness in comparison to the YMC MXenes. This finding is particularly evident within the LDA approximation. Due to superior hardness and layered structure with the metallic nature, YMX MXenes present an ideal option for applications in electrical connections and as a protective coating that offers low friction properties. Furthermore, modifying the electronic band gap of 2D MXenes, along with ensuring their structural stability, could greatly enhance the application of these materials in optoelectronic devices.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.