In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Jianyu Qin, Yuejiao An, Yanfeng Zhang
{"title":"In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction","authors":"Jianyu Qin,&nbsp;Yuejiao An,&nbsp;Yanfeng Zhang","doi":"10.3866/PKU.WHXB202408002","DOIUrl":null,"url":null,"abstract":"<div><div>Reforming CO<sub>2</sub> into storable solar fuels <em>via</em> semiconductor photocatalysis is considered an effective strategy to solve the greenhouse effect and resource shortage. Unfortunately, the problem of rapid photogenerated carriers severely limits the CO<sub>2</sub> reduction capability of one-component catalysts. The fabrication of S-scheme heterojunctions with defects can result in efficient spatial separation of photo-generated charge carriers and increase adsorption and activation of nonpolar molecules. Herein, ZnWO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> S-scheme heterojunctions with defects are constructed through <em>in situ</em> growth method. The experiments show that the generation rate of CO from CO<sub>2</sub> reduction is up to 232.4 μmol∙g<sup>−1</sup>∙h<sup>−1</sup> with a selectivity close to 100%, which is 11.6 and 8.5 times higher than those of pristine ZnWO<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub>, respectively. <em>In situ</em> XPS and work function analyses demonstrate the S-scheme charge transport pathway, which facilitates the spatial segregation of photogenerated carriers and promotes CO<sub>2</sub> reduction. <em>In situ</em> ESR illustrates that CO₂ molecules are adsorbed by nitrogen vacancies, which act as photoelectron acceptors during the photocatalytic reaction and are favorable for charge trapping and separation. The S-scheme charge transport mode and nitrogen vacancy work together to stimulate the efficient conversion of CO<sub>2</sub> to CO. This work presents significant insights to the cooperative influence of the S-scheme charge transport mode and defects in regulating CO<sub>2</sub> reduction activity.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (65KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2408002"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824001875","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reforming CO2 into storable solar fuels via semiconductor photocatalysis is considered an effective strategy to solve the greenhouse effect and resource shortage. Unfortunately, the problem of rapid photogenerated carriers severely limits the CO2 reduction capability of one-component catalysts. The fabrication of S-scheme heterojunctions with defects can result in efficient spatial separation of photo-generated charge carriers and increase adsorption and activation of nonpolar molecules. Herein, ZnWO4/g-C3N4 S-scheme heterojunctions with defects are constructed through in situ growth method. The experiments show that the generation rate of CO from CO2 reduction is up to 232.4 μmol∙g−1∙h−1 with a selectivity close to 100%, which is 11.6 and 8.5 times higher than those of pristine ZnWO4 and g-C3N4, respectively. In situ XPS and work function analyses demonstrate the S-scheme charge transport pathway, which facilitates the spatial segregation of photogenerated carriers and promotes CO2 reduction. In situ ESR illustrates that CO₂ molecules are adsorbed by nitrogen vacancies, which act as photoelectron acceptors during the photocatalytic reaction and are favorable for charge trapping and separation. The S-scheme charge transport mode and nitrogen vacancy work together to stimulate the efficient conversion of CO2 to CO. This work presents significant insights to the cooperative influence of the S-scheme charge transport mode and defects in regulating CO2 reduction activity.
  1. Download: Download high-res image (65KB)
  2. Download: Download full-size image
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信