Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang
{"title":"Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides","authors":"Xiaofeng Zhu ,&nbsp;Bingbing Xiao ,&nbsp;Jiaxin Su ,&nbsp;Shuai Wang ,&nbsp;Qingran Zhang ,&nbsp;Jun Wang","doi":"10.3866/PKU.WHXB202407005","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical oxygen reduction reaction <em>via</em> the two-electron pathway (2e-ORR) is becoming a promising and sustainable approach to producing hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) without significant carbon footprints. To achieve better performance, most of the recent progress and investigations have focused on developing novel carbon-based electrocatalysts. Nevertheless, the sophisticated preparations, decreased selectivity and undefined active sites of carbon-based catalysts have been generally acknowledged and criticized. To this end, transition metal oxides and chalcogenides have increasingly emerged for 2e-ORR, due to their catalytic stability and tunable microstructure. Here, the development of metal oxides and chalcogenides for O<sub>2</sub>-to-H<sub>2</sub>O<sub>2</sub> conversion is prospectively reviewed. By summarizing previous theoretical and experimental efforts, their diversity and outstanding catalytic activity are firstly provided. Meanwhile, the topological and chemical factors influencing 2e-ORR selectivity of the metal oxides/chalcogenides are systematically elucidated, including morphology, phase structures, doping and defects engineering. Thus, emphasizing the influence on the binding of ORR intermediates, the active sites and the underlying mechanism is highlighted. Finally, future opportunities and challenges in designing metal oxides/chalcogenides-based catalysts for H<sub>2</sub>O<sub>2</sub> electro-synthesis are outlined. The present review provides insights and fundamentals of metal oxides/chalcogenides as 2e-ORR catalysts, promoting their practical application in the energy-related industry.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (140KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2407005"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824001814","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical oxygen reduction reaction via the two-electron pathway (2e-ORR) is becoming a promising and sustainable approach to producing hydrogen peroxide (H2O2) without significant carbon footprints. To achieve better performance, most of the recent progress and investigations have focused on developing novel carbon-based electrocatalysts. Nevertheless, the sophisticated preparations, decreased selectivity and undefined active sites of carbon-based catalysts have been generally acknowledged and criticized. To this end, transition metal oxides and chalcogenides have increasingly emerged for 2e-ORR, due to their catalytic stability and tunable microstructure. Here, the development of metal oxides and chalcogenides for O2-to-H2O2 conversion is prospectively reviewed. By summarizing previous theoretical and experimental efforts, their diversity and outstanding catalytic activity are firstly provided. Meanwhile, the topological and chemical factors influencing 2e-ORR selectivity of the metal oxides/chalcogenides are systematically elucidated, including morphology, phase structures, doping and defects engineering. Thus, emphasizing the influence on the binding of ORR intermediates, the active sites and the underlying mechanism is highlighted. Finally, future opportunities and challenges in designing metal oxides/chalcogenides-based catalysts for H2O2 electro-synthesis are outlined. The present review provides insights and fundamentals of metal oxides/chalcogenides as 2e-ORR catalysts, promoting their practical application in the energy-related industry.
  1. Download: Download high-res image (140KB)
  2. Download: Download full-size image
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信