{"title":"RiverDetectWood: A tool for automatic classification and quantification of river wood in river systems using aerial imagery","authors":"Gauthier Grimmer, Romain Wenger, Valentin Chardon","doi":"10.1016/j.softx.2025.102042","DOIUrl":null,"url":null,"abstract":"<div><div>The RiverDetectWood tool automates the classification and characterization of wood in river systems using very high spatial resolution (VHSR) aerial photographs. River wood plays a dual role in river management: it contributes to habitat diversity and geomorphological changes but can also increase flood risk and infrastructure damage. Traditional field-based river wood surveys are time-consuming and geographically limited. By integrating machine learning techniques and remote sensing, RiverDetectWood offers a cost-effective, scalable solution for monitoring river wood presence and extracting key variables, such as length, diameter, area, and volume. This tool is designed for easy use by river managers and researchers, facilitating long-term monitoring and decision-making.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"29 ","pages":"Article 102042"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711025000093","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The RiverDetectWood tool automates the classification and characterization of wood in river systems using very high spatial resolution (VHSR) aerial photographs. River wood plays a dual role in river management: it contributes to habitat diversity and geomorphological changes but can also increase flood risk and infrastructure damage. Traditional field-based river wood surveys are time-consuming and geographically limited. By integrating machine learning techniques and remote sensing, RiverDetectWood offers a cost-effective, scalable solution for monitoring river wood presence and extracting key variables, such as length, diameter, area, and volume. This tool is designed for easy use by river managers and researchers, facilitating long-term monitoring and decision-making.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.