{"title":"Evolving privacy: Drift parameter estimation for discretely observed i.i.d. diffusion processes under LDP","authors":"Chiara Amorino , Arnaud Gloter , Hélène Halconruy","doi":"10.1016/j.spa.2024.104557","DOIUrl":null,"url":null,"abstract":"<div><div>The problem of estimating a parameter in the drift coefficient is addressed for <span><math><mi>N</mi></math></span> discretely observed independent and identically distributed stochastic differential equations (SDEs). This is done considering additional constraints, wherein only public data can be published and used for inference. The concept of local differential privacy (LDP) is formally introduced for a system of stochastic differential equations. The objective is to estimate the drift parameter by proposing a contrast function based on a pseudo-likelihood approach. A suitably scaled Laplace noise is incorporated to meet the privacy requirements. Our key findings encompass the derivation of explicit conditions tied to the privacy level. Under these conditions, we establish the consistency and asymptotic normality of the associated estimator. Notably, the convergence rate is intricately linked to the privacy level, and in some situations may be completely different from the case where privacy constraints are ignored. Our results hold true as the discretization step approaches zero and the number of processes <span><math><mi>N</mi></math></span> tends to infinity.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"181 ","pages":"Article 104557"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002655","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of estimating a parameter in the drift coefficient is addressed for discretely observed independent and identically distributed stochastic differential equations (SDEs). This is done considering additional constraints, wherein only public data can be published and used for inference. The concept of local differential privacy (LDP) is formally introduced for a system of stochastic differential equations. The objective is to estimate the drift parameter by proposing a contrast function based on a pseudo-likelihood approach. A suitably scaled Laplace noise is incorporated to meet the privacy requirements. Our key findings encompass the derivation of explicit conditions tied to the privacy level. Under these conditions, we establish the consistency and asymptotic normality of the associated estimator. Notably, the convergence rate is intricately linked to the privacy level, and in some situations may be completely different from the case where privacy constraints are ignored. Our results hold true as the discretization step approaches zero and the number of processes tends to infinity.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.