Peter Braunsteins , Sophie Hautphenne , James Kerlidis
{"title":"Linking population-size-dependent and controlled branching processes","authors":"Peter Braunsteins , Sophie Hautphenne , James Kerlidis","doi":"10.1016/j.spa.2024.104556","DOIUrl":null,"url":null,"abstract":"<div><div>Population-size dependent branching processes (PSDBPs) and controlled branching processes (CBPs) are two classes of branching processes used to model biological populations, including those that exhibit logistic growth. In this paper we develop connections between the two, with the ultimate goal of determining when a population is more appropriately modelled with a PSDBP or a CBP. In particular, we state conditions for the existence of equivalent PSDBPs and CBPs, we then consider the subclass of CBPs with deterministic control functions (DCBPs), stating a necessary and sufficient condition for DCBP–PSDBP equivalence. Finally, we derive an upper bound on the total variation distance between non-equivalent DCBPs and PSDBPs with matching first and second moments and equal initial population size, and show that under certain conditions this bound tends to zero as the initial population size becomes large.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"181 ","pages":"Article 104556"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002643","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Population-size dependent branching processes (PSDBPs) and controlled branching processes (CBPs) are two classes of branching processes used to model biological populations, including those that exhibit logistic growth. In this paper we develop connections between the two, with the ultimate goal of determining when a population is more appropriately modelled with a PSDBP or a CBP. In particular, we state conditions for the existence of equivalent PSDBPs and CBPs, we then consider the subclass of CBPs with deterministic control functions (DCBPs), stating a necessary and sufficient condition for DCBP–PSDBP equivalence. Finally, we derive an upper bound on the total variation distance between non-equivalent DCBPs and PSDBPs with matching first and second moments and equal initial population size, and show that under certain conditions this bound tends to zero as the initial population size becomes large.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.