CleanAI: Deep neural network model quality evaluation tool

IF 2.4 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Osman Caglar , Cem Baglum , Ugur Yayan
{"title":"CleanAI: Deep neural network model quality evaluation tool","authors":"Osman Caglar ,&nbsp;Cem Baglum ,&nbsp;Ugur Yayan","doi":"10.1016/j.softx.2024.102015","DOIUrl":null,"url":null,"abstract":"<div><div>The growing deployment of AI systems in high-risk environments, along with the increasing necessity of integrating AI into portable devices, emphasizes the need to rigorously assess their quality and reliability. Existing tools for analyzing Deep Neural Network (DNN) models' strength, safety, and quality are limited. CleanAI addresses this gap, serving as an advanced testing system to evaluate the robustness, quality, and dependability of DNN models. It incorporates eleven coverage testing methods, providing developers with insights into DNN quality, enabling analysis of model performance, and generating comprehensive output reports. This study compares various ResNet models using activation metrics, boundary metrics, and interaction metrics, revealing qualitative differences. This comparative analysis informs developers, setting a critical benchmark to tailor AI solutions adhering to stringent quality standards. Ultimately, it encourages reconsideration of model complexity and memory footprint for optimized designs, enhancing overall performance and efficiency. Additionally, by simplifying models and reducing their size, CleanAI facilitates the acceleration of AI models, resulting in significant time and cost savings. The findings from the comparative analysis also demonstrate the potential for substantial optimization in model complexity and size. By leveraging CleanAI's comprehensive coverage metrics, developers can identify areas for refinement, leading to streamlined models with reduced memory requirements. This approach not only enhances computational efficiency but also supports the growing demand for lightweight AI systems suitable for deployment on portable devices. CleanAI's role in bridging the gap between robustness and efficiency makes it a crucial tool for advancing AI development while maintaining high standards of quality and reliability.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"29 ","pages":"Article 102015"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711024003856","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The growing deployment of AI systems in high-risk environments, along with the increasing necessity of integrating AI into portable devices, emphasizes the need to rigorously assess their quality and reliability. Existing tools for analyzing Deep Neural Network (DNN) models' strength, safety, and quality are limited. CleanAI addresses this gap, serving as an advanced testing system to evaluate the robustness, quality, and dependability of DNN models. It incorporates eleven coverage testing methods, providing developers with insights into DNN quality, enabling analysis of model performance, and generating comprehensive output reports. This study compares various ResNet models using activation metrics, boundary metrics, and interaction metrics, revealing qualitative differences. This comparative analysis informs developers, setting a critical benchmark to tailor AI solutions adhering to stringent quality standards. Ultimately, it encourages reconsideration of model complexity and memory footprint for optimized designs, enhancing overall performance and efficiency. Additionally, by simplifying models and reducing their size, CleanAI facilitates the acceleration of AI models, resulting in significant time and cost savings. The findings from the comparative analysis also demonstrate the potential for substantial optimization in model complexity and size. By leveraging CleanAI's comprehensive coverage metrics, developers can identify areas for refinement, leading to streamlined models with reduced memory requirements. This approach not only enhances computational efficiency but also supports the growing demand for lightweight AI systems suitable for deployment on portable devices. CleanAI's role in bridging the gap between robustness and efficiency makes it a crucial tool for advancing AI development while maintaining high standards of quality and reliability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
SoftwareX
SoftwareX COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
5.50
自引率
2.90%
发文量
184
审稿时长
9 weeks
期刊介绍: SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信