{"title":"Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production","authors":"Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li","doi":"10.3866/PKU.WHXB202407020","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research. In this study, we designed and prepared a Covalent Triazine Framework (CTF)-Cu<sub>2</sub>O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production. The light absorption capacity, electron-hole separation efficiency and H<sub>2</sub>-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon (NC) layer and the S-scheme heterojunction. Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions. Moreover, the NC layer could simultaneously reduce the photocorrosion of Cu<sub>2</sub>O and promote the electron transfer. Experimental results demonstrate that the CTF-7% Cu<sub>2</sub>O@NC composite shows outstanding hydrogen-production performance under visible light, achieving 15645 μmol∙g<sup>−1</sup>∙h<sup>−1</sup>, significantly surpassing the photocatalytic activity of pure CTF (2673 μmol∙g<sup>−1</sup>∙h<sup>−1</sup>). This study introduces a novel approach to the development of efficient and innovative photocatalytic materials, strongly supporting the advancement of sustainable hydrogen energy.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (131KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2407020"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824001887","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research. In this study, we designed and prepared a Covalent Triazine Framework (CTF)-Cu2O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production. The light absorption capacity, electron-hole separation efficiency and H2-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon (NC) layer and the S-scheme heterojunction. Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions. Moreover, the NC layer could simultaneously reduce the photocorrosion of Cu2O and promote the electron transfer. Experimental results demonstrate that the CTF-7% Cu2O@NC composite shows outstanding hydrogen-production performance under visible light, achieving 15645 μmol∙g−1∙h−1, significantly surpassing the photocatalytic activity of pure CTF (2673 μmol∙g−1∙h−1). This study introduces a novel approach to the development of efficient and innovative photocatalytic materials, strongly supporting the advancement of sustainable hydrogen energy.