Room Temperature Dehydrogenation of Gaseous Methanol over Polycrystalline Gold Triggered and Traced by Oxygen K-edge X-rays

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Annette Pietzsch*, Johannes Niskanen, Vinicius Vaz da Cruz, Sebastian Eckert, Mattis Fondell, Raphael M. Jay, Xingye Lu, Daniel McNally, Thorsten Schmitt and Alexander Föhlisch, 
{"title":"Room Temperature Dehydrogenation of Gaseous Methanol over Polycrystalline Gold Triggered and Traced by Oxygen K-edge X-rays","authors":"Annette Pietzsch*,&nbsp;Johannes Niskanen,&nbsp;Vinicius Vaz da Cruz,&nbsp;Sebastian Eckert,&nbsp;Mattis Fondell,&nbsp;Raphael M. Jay,&nbsp;Xingye Lu,&nbsp;Daniel McNally,&nbsp;Thorsten Schmitt and Alexander Föhlisch,&nbsp;","doi":"10.1021/acs.jpcc.4c0687010.1021/acs.jpcc.4c06870","DOIUrl":null,"url":null,"abstract":"<p >The room temperature conversion of gaseous methanol to carbon monoxide and hydrogen on a polycrystalline Au film at ambient pressure has been triggered and characterized by oxygen K-edge excitation and vibrationally resolved resonant inelastic X-ray scattering. The rate-limiting first methanol dehydrogenation step is driven by ultrafast O–H dissociation and deprotonation of O K-edge excited CH<sub>3</sub>OH. The Au surface further dehydrogenates the CH<sub>3</sub>O<sup>+</sup> photoradical created by X-rays via electron transfer from the Au surface. With vibrationally resolved resonant inelastic X-ray scattering, we trace the CO molecular potential energy surface along the C–O coordinate. The CO bond softens, and the C–O stretch frequency changes from 2250 to 2065 cm<sup>–1</sup> at a CO chemisorption energy of 38–58 kJ/mol. This constitutes weak chemisorption as compared to the transition metals but also stronger bonding than the physisorbed CO species on single-crystal Au surfaces. In liquid methanol, the recombination of the CH<sub>3</sub>O<sup>+</sup> photoradical created by X-rays with protons quenches this conversion.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 5","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c06870","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c06870","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The room temperature conversion of gaseous methanol to carbon monoxide and hydrogen on a polycrystalline Au film at ambient pressure has been triggered and characterized by oxygen K-edge excitation and vibrationally resolved resonant inelastic X-ray scattering. The rate-limiting first methanol dehydrogenation step is driven by ultrafast O–H dissociation and deprotonation of O K-edge excited CH3OH. The Au surface further dehydrogenates the CH3O+ photoradical created by X-rays via electron transfer from the Au surface. With vibrationally resolved resonant inelastic X-ray scattering, we trace the CO molecular potential energy surface along the C–O coordinate. The CO bond softens, and the C–O stretch frequency changes from 2250 to 2065 cm–1 at a CO chemisorption energy of 38–58 kJ/mol. This constitutes weak chemisorption as compared to the transition metals but also stronger bonding than the physisorbed CO species on single-crystal Au surfaces. In liquid methanol, the recombination of the CH3O+ photoradical created by X-rays with protons quenches this conversion.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信