{"title":"Investigation of Electron Transfer Properties on Silicalite-1 Zeolite for Potential Electrocatalytic Applications","authors":"Yingying Jin, Xichen Yin, Guanghua Yu, Qiming Sun* and Jiong Wang*, ","doi":"10.1021/jacs.4c1025810.1021/jacs.4c10258","DOIUrl":null,"url":null,"abstract":"<p >To develop high-performance electrocatalysts is critical to sustainable conversion and storage of renewable energy. Silicalite-1 (S-1) zeolite is considered promising for constructing electrocatalysts featuring uniform and precise porosity and a stable structural skeleton even at extreme potentials. However, its electrochemical properties remain poorly understood, particularly regarding the roles of internal pore channels. Herein, inner- and outer-sphere electron transfer (ISET/OSET) routes on the S-1 zeolite were investigated by classical redox probes. The results for the first time revealed that the ISET kinetics inside the pores of S-1 zeolite is more rapid than that on external surfaces, optimized by microporous scale channels and terminated hydroxyl groups. Conversely, the kinetics of the OSET did not closely depend on the porosity and surface properties of the S-1 zeolite. These electrochemical insights further initiated a lithium-ion-incorporated S-1 zeolite with rapid ISET kinetics for electrocatalysis of oxygen reduction. It demonstrated a high performance of 85% selectivity for H<sub>2</sub>O<sub>2</sub> production in a neutral solution and a yield of 9.2 mol g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup> when configured in a flow cell.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 51","pages":"35109–35116 35109–35116"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c10258","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To develop high-performance electrocatalysts is critical to sustainable conversion and storage of renewable energy. Silicalite-1 (S-1) zeolite is considered promising for constructing electrocatalysts featuring uniform and precise porosity and a stable structural skeleton even at extreme potentials. However, its electrochemical properties remain poorly understood, particularly regarding the roles of internal pore channels. Herein, inner- and outer-sphere electron transfer (ISET/OSET) routes on the S-1 zeolite were investigated by classical redox probes. The results for the first time revealed that the ISET kinetics inside the pores of S-1 zeolite is more rapid than that on external surfaces, optimized by microporous scale channels and terminated hydroxyl groups. Conversely, the kinetics of the OSET did not closely depend on the porosity and surface properties of the S-1 zeolite. These electrochemical insights further initiated a lithium-ion-incorporated S-1 zeolite with rapid ISET kinetics for electrocatalysis of oxygen reduction. It demonstrated a high performance of 85% selectivity for H2O2 production in a neutral solution and a yield of 9.2 mol gcat–1 h–1 when configured in a flow cell.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.