Investigation of the Effects of Light, Darkness, and Dim Light on Rat Brain Tissue: A Biochemical and Histological Study

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hıdır Pekmez*, Tuğba Raika Kıran, Fahriye Seçil Tecelli̇oğlu, Feyza İnceoğlu, Merve Aydin, Emrah Zayman and Sinan Canpolat, 
{"title":"Investigation of the Effects of Light, Darkness, and Dim Light on Rat Brain Tissue: A Biochemical and Histological Study","authors":"Hıdır Pekmez*,&nbsp;Tuğba Raika Kıran,&nbsp;Fahriye Seçil Tecelli̇oğlu,&nbsp;Feyza İnceoğlu,&nbsp;Merve Aydin,&nbsp;Emrah Zayman and Sinan Canpolat,&nbsp;","doi":"10.1021/acschemneuro.4c0075710.1021/acschemneuro.4c00757","DOIUrl":null,"url":null,"abstract":"<p >This study evaluates acetylcholinesterase (AChE) enzyme activity levels, oxidative stress parameters, histopathological findings, and serum melatonin levels in rat brain tissue. 32 male Wistar Albino rats were randomly divided into four groups: Control, Light, Dark, Dim light (<i>n</i> = 8 each group). After a 30 day experiment, brain tissues were collected to measure AChE, glutathione S-transferase (GST), glutathione (GSH), and malondialdehyde (MDA) levels and conduct histopathological analyses. Serum melatonin levels were also measured. In this study, we observed a significant increase in MDA levels in dim light, dark, and light groups. AChE and α-GST enzyme activity levels were significantly decreased in the dark group compared with the other groups. Additionally, there was a statistical difference in melatonin levels between the light and dark groups. In the light microscope examination of the sections stained with hematoxylin-eosin from the dark group brain tissue, mild perineuronal edema was observed in all areas. Our study is the first to compare the effects of three groups on the brain: continuous light, continuous darkness, and dim light at night. Additionally, it is the only study to examine the effects of light exposure differences on the brain AChE levels.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"16 3","pages":"513–518 513–518"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00757","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates acetylcholinesterase (AChE) enzyme activity levels, oxidative stress parameters, histopathological findings, and serum melatonin levels in rat brain tissue. 32 male Wistar Albino rats were randomly divided into four groups: Control, Light, Dark, Dim light (n = 8 each group). After a 30 day experiment, brain tissues were collected to measure AChE, glutathione S-transferase (GST), glutathione (GSH), and malondialdehyde (MDA) levels and conduct histopathological analyses. Serum melatonin levels were also measured. In this study, we observed a significant increase in MDA levels in dim light, dark, and light groups. AChE and α-GST enzyme activity levels were significantly decreased in the dark group compared with the other groups. Additionally, there was a statistical difference in melatonin levels between the light and dark groups. In the light microscope examination of the sections stained with hematoxylin-eosin from the dark group brain tissue, mild perineuronal edema was observed in all areas. Our study is the first to compare the effects of three groups on the brain: continuous light, continuous darkness, and dim light at night. Additionally, it is the only study to examine the effects of light exposure differences on the brain AChE levels.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信