Remote sensing measurements of fresh volcanic ash during the Mount Etna emission of February 21, 2019

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Salvatore Spinosa , Antonella Boselli , Luigi Mereu , Giuseppe Leto , Ricardo Zanmar Sanchez , Simona Scollo
{"title":"Remote sensing measurements of fresh volcanic ash during the Mount Etna emission of February 21, 2019","authors":"Salvatore Spinosa ,&nbsp;Antonella Boselli ,&nbsp;Luigi Mereu ,&nbsp;Giuseppe Leto ,&nbsp;Ricardo Zanmar Sanchez ,&nbsp;Simona Scollo","doi":"10.1016/j.rsase.2024.101413","DOIUrl":null,"url":null,"abstract":"<div><div>Explosive activity can have a relevant impact in the atmosphere even during weak and continuous volcanic ash emissions. In fact, this type of activity can affect highly populated areas and needs to be investigated in order to reduce potential risks. In this paper, we analyze the volcanic ash emissions that took place on February 21, 2019 from the North East Crater, one of the summit craters of Mount Etna, in Italy. During the activity, a continuous ash emission caused the closure of the International Airport in Catania due to a large quantity of volcanic particles in the atmosphere that were dispersed by winds several kilometers away from the eruptive crater, mainly toward the west, south and south-east directions. This activity was analyzed using a dual depolarization LiDAR and visual and thermal cameras that are part of the instrumental network of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo. The LiDAR derived aerosol backscattering coefficient and particle linear depolarization ratio profiles, both measured at 355 nm and 532 nm, gave insights on plume dynamics and variations of some features of the particles within the volcanic plume. During this event, we estimated a maximum volcanic plume height of about 3 km above sea level and LiDAR data show two distinct layers in the atmosphere, LiDAR derived aerosol properties were used for a first application of the Volcanic Ash LiDAR Retrieval - Maximum Likelihood (VALR-ML) algorithm on two volcanic ash layers, allowing to obtain a maximum value of volcanic ash concentration of 7.5 ± 3.7 mg/m<sup>3</sup> and 8.1 ± 4.0 mg/m<sup>3</sup>, in the first layer at 355 and 532 nm, respectively; while in the second layer we obtained concentration values of 6.6 ± 3.3 and 8.5 ± 4.2 mg/m<sup>3</sup> at 355 and 532 nm, respectively. Moreover, the plume was composed of very fine ash of about 1 μm dimensions. We found that weak and continuous volcanic ash emissions can reach thresholds that cause troubles to aviation operations. Our work shows how LiDAR systems are able to estimate critical information for aviation safety in the proximity of the airport, such as the altitude, the concentration and the size of emitted ash particles, even during low-intensity explosive activity.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101413"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Explosive activity can have a relevant impact in the atmosphere even during weak and continuous volcanic ash emissions. In fact, this type of activity can affect highly populated areas and needs to be investigated in order to reduce potential risks. In this paper, we analyze the volcanic ash emissions that took place on February 21, 2019 from the North East Crater, one of the summit craters of Mount Etna, in Italy. During the activity, a continuous ash emission caused the closure of the International Airport in Catania due to a large quantity of volcanic particles in the atmosphere that were dispersed by winds several kilometers away from the eruptive crater, mainly toward the west, south and south-east directions. This activity was analyzed using a dual depolarization LiDAR and visual and thermal cameras that are part of the instrumental network of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo. The LiDAR derived aerosol backscattering coefficient and particle linear depolarization ratio profiles, both measured at 355 nm and 532 nm, gave insights on plume dynamics and variations of some features of the particles within the volcanic plume. During this event, we estimated a maximum volcanic plume height of about 3 km above sea level and LiDAR data show two distinct layers in the atmosphere, LiDAR derived aerosol properties were used for a first application of the Volcanic Ash LiDAR Retrieval - Maximum Likelihood (VALR-ML) algorithm on two volcanic ash layers, allowing to obtain a maximum value of volcanic ash concentration of 7.5 ± 3.7 mg/m3 and 8.1 ± 4.0 mg/m3, in the first layer at 355 and 532 nm, respectively; while in the second layer we obtained concentration values of 6.6 ± 3.3 and 8.5 ± 4.2 mg/m3 at 355 and 532 nm, respectively. Moreover, the plume was composed of very fine ash of about 1 μm dimensions. We found that weak and continuous volcanic ash emissions can reach thresholds that cause troubles to aviation operations. Our work shows how LiDAR systems are able to estimate critical information for aviation safety in the proximity of the airport, such as the altitude, the concentration and the size of emitted ash particles, even during low-intensity explosive activity.

Abstract Image

2019年2月21日埃特纳火山喷发期间新鲜火山灰的遥感测量
即使在微弱和持续的火山灰排放期间,爆炸活动也会对大气产生相关影响。事实上,这类活动可能影响人口密集的地区,需要进行调查,以减少潜在的风险。在本文中,我们分析了2019年2月21日发生在意大利埃特纳火山顶部火山口之一东北火山口的火山灰排放。在火山活动期间,由于大气中大量的火山颗粒被离火山口数公里远的风吹散,主要是向西、南和东南方向吹散,持续不断的火山灰喷发导致卡塔尼亚国际机场关闭。这一活动是使用双去偏振激光雷达和视觉和热摄像机进行分析的,这些摄像机是国家地质火山研究所、Etneo天文台仪器网络的一部分。激光雷达得到的气溶胶后向散射系数和粒子线性退极化比曲线,都是在355nm和532nm测量的,提供了羽流动力学和火山羽流中粒子某些特征变化的见解。在这个事件中,我们估计最大火山柱高度约3公里海拔和激光雷达数据显示两个不同的层在大气中,气溶胶激光雷达派生属性被用于火山灰激光雷达获取的第一个应用程序——最大似然(VALR-ML)算法在两个火山灰层,允许获得最大价值的火山灰浓度为7.5±3.7毫克/立方米,8.1±4.0毫克/立方米,在第一层355和532海里,分别;而在第二层,我们在355和532 nm处分别获得了6.6±3.3和8.5±4.2 mg/m3的浓度值。烟羽由1 μm左右的细灰组成。我们发现,微弱和持续的火山灰排放可以达到对航空运营造成麻烦的阈值。我们的工作展示了激光雷达系统如何能够估计机场附近航空安全的关键信息,例如高度、排放的火山灰颗粒的浓度和大小,即使在低强度爆炸活动期间也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信