Chuanjie Zhang, Jiawei Ding, Kiat Shenq Lim, Wenjie Zhou, Wenyu Miao, Siqi Wu, Hanqing Liu, Da Huang, Chufeng Chen, Hongchao He, Jun Xiao, Dan-feng Xu, Yan Shen, Hai Huang, Yi Gao
{"title":"JMJD6 Rewires ATF4-Dependent Glutathione Metabolism to Confer Ferroptosis Resistance in SPOP-Mutated Prostate Cancer","authors":"Chuanjie Zhang, Jiawei Ding, Kiat Shenq Lim, Wenjie Zhou, Wenyu Miao, Siqi Wu, Hanqing Liu, Da Huang, Chufeng Chen, Hongchao He, Jun Xiao, Dan-feng Xu, Yan Shen, Hai Huang, Yi Gao","doi":"10.1158/0008-5472.can-23-2796","DOIUrl":null,"url":null,"abstract":"Ferroptosis inducers have shown therapeutic potential in prostate cancer (PCa), but tumor heterogeneity poses a barrier to their efficacy. Distinguishing the regulators orchestrating metabolic crosstalk between cancer cells could shed light on therapeutic strategies to more robustly activate ferroptosis. Here, we found that aberrant accumulation of jumonji domain containing 6 (JMJD6) proteins correlated with poorer prognosis of PCa patients. Mechanistically, PCa-associated speckle type BTB/POZ protein (SPOP) mutants impaired the proteasomal degradation of JMJD6 proteins. Elevated JMJD6 and ATF4 coordinated enhancer-promoter loop interactions to stimulate the glutathione biosynthesis pathway. Independent of androgen receptor, JMJD6 recruited mediator subunits (Med1/14) to assemble de novo enhancers mapping to pivotal genes associated with glutathione metabolism, including SLC7A11, GCLM, ME1, and others. SPOP mutations thus induced intrinsic resistance to ferroptosis, dependent on enhanced JMJD6-ATF4 activity. Consequently, targeting JMJD6 rendered SPOP-mutated PCa selectively sensitive to ferroptosis. The JMJD6 antagonist SKLB325 synergized with erastin in multiple pre-clinical PCa models. Together, this study identifies JMJD6 as a druggable vulnerability in SPOP-mutated PCa to increase sensitivity to ferroptosis inducers.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"61 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-23-2796","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis inducers have shown therapeutic potential in prostate cancer (PCa), but tumor heterogeneity poses a barrier to their efficacy. Distinguishing the regulators orchestrating metabolic crosstalk between cancer cells could shed light on therapeutic strategies to more robustly activate ferroptosis. Here, we found that aberrant accumulation of jumonji domain containing 6 (JMJD6) proteins correlated with poorer prognosis of PCa patients. Mechanistically, PCa-associated speckle type BTB/POZ protein (SPOP) mutants impaired the proteasomal degradation of JMJD6 proteins. Elevated JMJD6 and ATF4 coordinated enhancer-promoter loop interactions to stimulate the glutathione biosynthesis pathway. Independent of androgen receptor, JMJD6 recruited mediator subunits (Med1/14) to assemble de novo enhancers mapping to pivotal genes associated with glutathione metabolism, including SLC7A11, GCLM, ME1, and others. SPOP mutations thus induced intrinsic resistance to ferroptosis, dependent on enhanced JMJD6-ATF4 activity. Consequently, targeting JMJD6 rendered SPOP-mutated PCa selectively sensitive to ferroptosis. The JMJD6 antagonist SKLB325 synergized with erastin in multiple pre-clinical PCa models. Together, this study identifies JMJD6 as a druggable vulnerability in SPOP-mutated PCa to increase sensitivity to ferroptosis inducers.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.