Giuseppe D. Saldi, Thierry Decrausaz, Vasileios Mavromatis, Pascale Bénézeth
{"title":"Carbonation processes in Oman peridotite: temperature-dependent reactions and Mg isotope composition of reacting fluids","authors":"Giuseppe D. Saldi, Thierry Decrausaz, Vasileios Mavromatis, Pascale Bénézeth","doi":"10.1016/j.gca.2025.01.029","DOIUrl":null,"url":null,"abstract":"The study of natural analogues of CO<ce:inf loc=\"post\">2</ce:inf> mineral sequestration combined with the experimental quantification of carbonation reactions constitutes a fundamental approach to understand the spatial and structural distribution of carbonated bodies and the time scales by which large amounts of CO<ce:inf loc=\"post\">2</ce:inf> can be stored in solid form into geologic formations. To better quantify the carbonation rates of ultramafic rocks and study the evolution of dissolved Mg isotope composition during their interaction with CO<ce:inf loc=\"post\">2</ce:inf>-rich fluids, a series of batch carbonation experiments using a partially serpentinized harzburgite from the Semail ophiolite (Oman) was conducted at 90–180 °C and at constant CO<ce:inf loc=\"post\">2</ce:inf> partial pressures (∼ 15–20 bar). The yield of the carbonation reaction increased from ∼ 0 at 90 °C to a maximum of 31 mol % at 150 °C, decreasing to 12 mol % at 180 °C over a period of one month. Magnesites containing 3–9 wt% of Fe and silica polymorphs (SiO<ce:inf loc=\"post\">2(am)</ce:inf> and chalcedony) were the main reaction products, with a fraction of secondary Mg-silicates that increased with increasing temperature, significantly reducing the carbonation extent at 180 °C. The aqueous fluid became progressively enriched in heavy isotopes with the progress of the carbonation reaction. The apparent Mg isotope fractionations between the rock and bulk fluid (Δ<ce:sup loc=\"post\">26</ce:sup>Mg = δ<ce:sup loc=\"post\">26</ce:sup>Mg<ce:inf loc=\"post\">solid</ce:inf> − δ<ce:sup loc=\"post\">26</ce:sup>Mg<ce:inf loc=\"post\">fluid</ce:inf>) varied from −1.6 ‰ at 120 °C to −0.9 ‰ at 180 °C, consistent with the preferential uptake of <ce:sup loc=\"post\">24</ce:sup>Mg by carbonate minerals and the decrease of isotope fractionation with increasing temperature. The average magnesite isotope compositions (−1.6 ‰ ≤ δ<ce:sup loc=\"post\">26</ce:sup>Mg ≤ -0.3 ‰) derived from mass-balance calculations were found to be within the range of δ<ce:sup loc=\"post\">26</ce:sup>Mg values reported for Oman listvenites, suggesting that the carbonation processes in this geological unit took place within the temperature range considered in this study (∼120–180 °C).","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"41 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2025.01.029","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The study of natural analogues of CO2 mineral sequestration combined with the experimental quantification of carbonation reactions constitutes a fundamental approach to understand the spatial and structural distribution of carbonated bodies and the time scales by which large amounts of CO2 can be stored in solid form into geologic formations. To better quantify the carbonation rates of ultramafic rocks and study the evolution of dissolved Mg isotope composition during their interaction with CO2-rich fluids, a series of batch carbonation experiments using a partially serpentinized harzburgite from the Semail ophiolite (Oman) was conducted at 90–180 °C and at constant CO2 partial pressures (∼ 15–20 bar). The yield of the carbonation reaction increased from ∼ 0 at 90 °C to a maximum of 31 mol % at 150 °C, decreasing to 12 mol % at 180 °C over a period of one month. Magnesites containing 3–9 wt% of Fe and silica polymorphs (SiO2(am) and chalcedony) were the main reaction products, with a fraction of secondary Mg-silicates that increased with increasing temperature, significantly reducing the carbonation extent at 180 °C. The aqueous fluid became progressively enriched in heavy isotopes with the progress of the carbonation reaction. The apparent Mg isotope fractionations between the rock and bulk fluid (Δ26Mg = δ26Mgsolid − δ26Mgfluid) varied from −1.6 ‰ at 120 °C to −0.9 ‰ at 180 °C, consistent with the preferential uptake of 24Mg by carbonate minerals and the decrease of isotope fractionation with increasing temperature. The average magnesite isotope compositions (−1.6 ‰ ≤ δ26Mg ≤ -0.3 ‰) derived from mass-balance calculations were found to be within the range of δ26Mg values reported for Oman listvenites, suggesting that the carbonation processes in this geological unit took place within the temperature range considered in this study (∼120–180 °C).
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.