Transcriptional regulatory network analysis identifies GRN as a key regulator bridging chemotherapy and immunotherapy response in small cell lung cancer

IF 29.5 1区 医学 Q1 HEMATOLOGY
Seungyeul Yoo, Ayushi S. Patel, Sarah Karam, Yi Zhong, Li Wang, Feng Jiang, Ranran Kong, Sharon Bikvan, Wenhui Wang, Abhilasha Sinha, Charles A. Powell, Jun Zhu, Hideo Watanabe
{"title":"Transcriptional regulatory network analysis identifies GRN as a key regulator bridging chemotherapy and immunotherapy response in small cell lung cancer","authors":"Seungyeul Yoo, Ayushi S. Patel, Sarah Karam, Yi Zhong, Li Wang, Feng Jiang, Ranran Kong, Sharon Bikvan, Wenhui Wang, Abhilasha Sinha, Charles A. Powell, Jun Zhu, Hideo Watanabe","doi":"10.1186/s13045-025-01667-5","DOIUrl":null,"url":null,"abstract":"Small cell lung cancer (SCLC) is an aggressive and heterogeneous subtype, representing 15% of lung cancer cases. Although SCLC initially responds to etoposide and platinum (EP) chemotherapy, nearly all patients relapse with resistant tumors. While recent advances in immunotherapy have shown promise, only 10–20% of patients benefit, and effective stratification methods are lacking. The mechanisms of resistance to both therapeutics remain obscure. In this study, we aimed to gain insights into those leveraging a recent surge in the field of SCLC genomics. We constructed a regulatory network for SCLC and identified granulin precursor (GRN) as a hub of EP response associated genes. GRN-low patients showed improved survival with chemotherapy, while GRN-high patients exhibited resistance. GRN overexpression in SCLC cells conferred resistance to EP treatment and suppressed neuroendocrine features. GRN and its associated genes were linked to cancer cell intrinsic immunogenicity, and single-cell RNA-seq data revealed that GRN expression is particularly high in subsets of tumor-associated macrophages. In concordance with these findings, GRN-low tumors showed significantly better survival with chemo-immunotherapy, while GRN-high tumors did not benefit from additional immunotherapy. GRN-high tumors, associated with non-neuroendocrine (non-NE) subtypes, had a higher level of macrophage infiltration, potentially contributing to immunotherapy resistance. These results highlight GRN as a critical regulator of chemo-resistance and a potential biomarker for immunotherapy resistance in SCLC. Targeted therapeutic strategies for GRN-low patients could improve outcomes, while new approaches are needed for GRN-high patients. Overall, our findings implicate GRN as a bridge between chemotherapy and immunotherapy resistance through GRN-mediated mechanisms.","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"28 1","pages":""},"PeriodicalIF":29.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13045-025-01667-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Small cell lung cancer (SCLC) is an aggressive and heterogeneous subtype, representing 15% of lung cancer cases. Although SCLC initially responds to etoposide and platinum (EP) chemotherapy, nearly all patients relapse with resistant tumors. While recent advances in immunotherapy have shown promise, only 10–20% of patients benefit, and effective stratification methods are lacking. The mechanisms of resistance to both therapeutics remain obscure. In this study, we aimed to gain insights into those leveraging a recent surge in the field of SCLC genomics. We constructed a regulatory network for SCLC and identified granulin precursor (GRN) as a hub of EP response associated genes. GRN-low patients showed improved survival with chemotherapy, while GRN-high patients exhibited resistance. GRN overexpression in SCLC cells conferred resistance to EP treatment and suppressed neuroendocrine features. GRN and its associated genes were linked to cancer cell intrinsic immunogenicity, and single-cell RNA-seq data revealed that GRN expression is particularly high in subsets of tumor-associated macrophages. In concordance with these findings, GRN-low tumors showed significantly better survival with chemo-immunotherapy, while GRN-high tumors did not benefit from additional immunotherapy. GRN-high tumors, associated with non-neuroendocrine (non-NE) subtypes, had a higher level of macrophage infiltration, potentially contributing to immunotherapy resistance. These results highlight GRN as a critical regulator of chemo-resistance and a potential biomarker for immunotherapy resistance in SCLC. Targeted therapeutic strategies for GRN-low patients could improve outcomes, while new approaches are needed for GRN-high patients. Overall, our findings implicate GRN as a bridge between chemotherapy and immunotherapy resistance through GRN-mediated mechanisms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
48.10
自引率
2.10%
发文量
169
审稿时长
6-12 weeks
期刊介绍: The Journal of Hematology & Oncology, an open-access journal, publishes high-quality research covering all aspects of hematology and oncology, including reviews and research highlights on "hot topics" by leading experts. Given the close relationship and rapid evolution of hematology and oncology, the journal aims to meet the demand for a dedicated platform for publishing discoveries from both fields. It serves as an international platform for sharing laboratory and clinical findings among laboratory scientists, physician scientists, hematologists, and oncologists in an open-access format. With a rapid turnaround time from submission to publication, the journal facilitates real-time sharing of knowledge and new successes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信