Junye Chen;Chaowei Fang;Jichang Li;Yicheng Leng;Guanbin Li
{"title":"Decouple and Couple: Exploiting Prior Knowledge for Visible Video Watermark Removal","authors":"Junye Chen;Chaowei Fang;Jichang Li;Yicheng Leng;Guanbin Li","doi":"10.1109/TIP.2025.3534033","DOIUrl":null,"url":null,"abstract":"This paper aims to restore original background images in watermarked videos, overcoming challenges posed by traditional approaches that fail to handle the temporal dynamics and diverse watermark characteristics effectively. Our method introduces a unique framework that first “decouples” the extraction of prior knowledge—such as common-sense knowledge and residual background details—from the temporal modeling process, allowing for independent handling of background restoration and temporal consistency. Subsequently, it “couples” these extracted features by integrating them into the temporal modeling backbone of a video inpainting (VI) framework. This integration is facilitated by a specialized module, which includes an intrinsic background image prediction sub-module and a dual-branch frame embedding module, designed to reduce watermark interference and enhance the application of prior knowledge. Moreover, a frame-adaptive feature selection module dynamically adjusts the extraction of prior features based on the corruption level of each frame, ensuring their effective incorporation into the temporal processing. Extensive experiments on YouTube-VOS and DAVIS datasets validate our method’s efficiency in watermark removal and background restoration, showing significant improvement over state-of-the-art techniques in visible image watermark removal, video restoration, and video inpainting.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1192-1203"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10871924/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to restore original background images in watermarked videos, overcoming challenges posed by traditional approaches that fail to handle the temporal dynamics and diverse watermark characteristics effectively. Our method introduces a unique framework that first “decouples” the extraction of prior knowledge—such as common-sense knowledge and residual background details—from the temporal modeling process, allowing for independent handling of background restoration and temporal consistency. Subsequently, it “couples” these extracted features by integrating them into the temporal modeling backbone of a video inpainting (VI) framework. This integration is facilitated by a specialized module, which includes an intrinsic background image prediction sub-module and a dual-branch frame embedding module, designed to reduce watermark interference and enhance the application of prior knowledge. Moreover, a frame-adaptive feature selection module dynamically adjusts the extraction of prior features based on the corruption level of each frame, ensuring their effective incorporation into the temporal processing. Extensive experiments on YouTube-VOS and DAVIS datasets validate our method’s efficiency in watermark removal and background restoration, showing significant improvement over state-of-the-art techniques in visible image watermark removal, video restoration, and video inpainting.