VSR-Net: Vessel-Like Structure Rehabilitation Network With Graph Clustering

Haili Ye;Xiaoqing Zhang;Yan Hu;Huazhu Fu;Jiang Liu
{"title":"VSR-Net: Vessel-Like Structure Rehabilitation Network With Graph Clustering","authors":"Haili Ye;Xiaoqing Zhang;Yan Hu;Huazhu Fu;Jiang Liu","doi":"10.1109/TIP.2025.3526061","DOIUrl":null,"url":null,"abstract":"The morphologies of vessel-like structures, such as blood vessels and nerve fibres, play significant roles in disease diagnosis, e.g., Parkinson’s disease. Although deep network-based refinement segmentation and topology-preserving segmentation methods recently have achieved promising results in segmenting vessel-like structures, they still face two challenges: 1) existing methods often have limitations in rehabilitating subsection ruptures in segmented vessel-like structures; 2) they are typically overconfident in predicted segmentation results. To tackle these two challenges, this paper attempts to leverage the potential of spatial interconnection relationships among subsection ruptures from the structure rehabilitation perspective. Based on this perspective, we propose a novel Vessel-like Structure Rehabilitation Network (VSR-Net) to both rehabilitate subsection ruptures and improve the model calibration based on coarse vessel-like structure segmentation results. VSR-Net first constructs subsection rupture clusters via a Curvilinear Clustering Module (CCM). Then, the well-designed Curvilinear Merging Module (CMM) is applied to rehabilitate the subsection ruptures to obtain the refined vessel-like structures. Extensive experiments on six 2D/3D medical image datasets show that VSR-Net significantly outperforms state-of-the-art (SOTA) refinement segmentation methods with lower calibration errors. Additionally, we provide quantitative analysis to explain the morphological difference between the VSR-Net’s rehabilitation results and ground truth (GT), which are smaller compared to those between SOTA methods and GT, demonstrating that our method more effectively rehabilitates vessel-like structures.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1090-1105"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10871930/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The morphologies of vessel-like structures, such as blood vessels and nerve fibres, play significant roles in disease diagnosis, e.g., Parkinson’s disease. Although deep network-based refinement segmentation and topology-preserving segmentation methods recently have achieved promising results in segmenting vessel-like structures, they still face two challenges: 1) existing methods often have limitations in rehabilitating subsection ruptures in segmented vessel-like structures; 2) they are typically overconfident in predicted segmentation results. To tackle these two challenges, this paper attempts to leverage the potential of spatial interconnection relationships among subsection ruptures from the structure rehabilitation perspective. Based on this perspective, we propose a novel Vessel-like Structure Rehabilitation Network (VSR-Net) to both rehabilitate subsection ruptures and improve the model calibration based on coarse vessel-like structure segmentation results. VSR-Net first constructs subsection rupture clusters via a Curvilinear Clustering Module (CCM). Then, the well-designed Curvilinear Merging Module (CMM) is applied to rehabilitate the subsection ruptures to obtain the refined vessel-like structures. Extensive experiments on six 2D/3D medical image datasets show that VSR-Net significantly outperforms state-of-the-art (SOTA) refinement segmentation methods with lower calibration errors. Additionally, we provide quantitative analysis to explain the morphological difference between the VSR-Net’s rehabilitation results and ground truth (GT), which are smaller compared to those between SOTA methods and GT, demonstrating that our method more effectively rehabilitates vessel-like structures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信