{"title":"New results on non-disjoint and classical strong external difference families","authors":"Sophie Huczynska, Sophie Hume","doi":"10.1007/s10623-025-01566-3","DOIUrl":null,"url":null,"abstract":"<p>Classical strong external difference families (SEDFs) are much-studied combinatorial structures motivated by information security applications; it is conjectured that only one classical abelian SEDF exists with more than two sets. Recently, non-disjoint SEDFs were introduced; it was shown that families of these exist with arbitrarily many sets. We present constructions for both classical and non-disjoint SEDFs, which encompass all known non-cyclotomic examples for either type (plus many new examples) using a sequence-based framework. Moreover, we introduce a range of new external difference structures (allowing set-sizes to vary, and sets to be replaced by multisets) in both the classical and non-disjoint case, and show how these may be applied to various communications applications.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"25 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-025-01566-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Classical strong external difference families (SEDFs) are much-studied combinatorial structures motivated by information security applications; it is conjectured that only one classical abelian SEDF exists with more than two sets. Recently, non-disjoint SEDFs were introduced; it was shown that families of these exist with arbitrarily many sets. We present constructions for both classical and non-disjoint SEDFs, which encompass all known non-cyclotomic examples for either type (plus many new examples) using a sequence-based framework. Moreover, we introduce a range of new external difference structures (allowing set-sizes to vary, and sets to be replaced by multisets) in both the classical and non-disjoint case, and show how these may be applied to various communications applications.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.