Stress-related topology optimization based on Isogeometric Analysis and global stress measures

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
Yupeng Huang, Song Yao, Xing Chen
{"title":"Stress-related topology optimization based on Isogeometric Analysis and global stress measures","authors":"Yupeng Huang,&nbsp;Song Yao,&nbsp;Xing Chen","doi":"10.1016/j.finel.2025.104317","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a robust isogeometric topology optimization (ITO) framework that integrates Isogeometric Analysis (IGA) with global stress measures to enhance both accuracy and stability in stress-related structural optimization. Non-Uniform Rational B-Splines (NURBS)-based IGA is employed to ensure higher-order continuity and refined topology representation, enabling precise stress evaluation. The p-norm stress aggregation approximates maximum stress, while incorporating average stress into ITO mitigates oscillations for large p-norm parameters and further reduces sensitivity to <span><math><mi>P</mi></math></span>. Notably, this approach eliminates stress concentrations even when <span><math><mrow><mi>P</mi><mo>=</mo><mn>3</mn></mrow></math></span>, and maintains stable convergence as <span><math><mi>P</mi></math></span> increases up to 40 or more, thereby extending the feasible range of <span><math><mi>P</mi></math></span>-values. By examining various weight combinations of p-norm and average stress, we reveal how controlling both amplitude and mean stress leads to more uniform and lower stress levels. Additionally, an adaptive continuous scheme for stress constraints further improves convergence stability by gradually tightening stress limits from a relaxed state to the target value. Numerical results confirm that the proposed method consistently delivers accurate, stable, and efficient solutions for stress-related isogeometric topology optimization, marking a significant advancement in the field.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"245 ","pages":"Article 104317"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X2500006X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a robust isogeometric topology optimization (ITO) framework that integrates Isogeometric Analysis (IGA) with global stress measures to enhance both accuracy and stability in stress-related structural optimization. Non-Uniform Rational B-Splines (NURBS)-based IGA is employed to ensure higher-order continuity and refined topology representation, enabling precise stress evaluation. The p-norm stress aggregation approximates maximum stress, while incorporating average stress into ITO mitigates oscillations for large p-norm parameters and further reduces sensitivity to P. Notably, this approach eliminates stress concentrations even when P=3, and maintains stable convergence as P increases up to 40 or more, thereby extending the feasible range of P-values. By examining various weight combinations of p-norm and average stress, we reveal how controlling both amplitude and mean stress leads to more uniform and lower stress levels. Additionally, an adaptive continuous scheme for stress constraints further improves convergence stability by gradually tightening stress limits from a relaxed state to the target value. Numerical results confirm that the proposed method consistently delivers accurate, stable, and efficient solutions for stress-related isogeometric topology optimization, marking a significant advancement in the field.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信