Yifei Zhang, Lili Zhang, Long Wang, Shuai Shao, Bei Tao, Chunrui Hu, Yufei Chen, Yue Shen, Xianbiao Zhang, Shijia Pan, Hua Cao, Ming Sun, Jia Shi, Chunhong Jiang, Minghui Chen, Lin Zhou, Guang Ning, Chang Chen, Weiqing Wang
{"title":"Subcutaneous depth-selective spectral imaging with mμSORS enables noninvasive glucose monitoring","authors":"Yifei Zhang, Lili Zhang, Long Wang, Shuai Shao, Bei Tao, Chunrui Hu, Yufei Chen, Yue Shen, Xianbiao Zhang, Shijia Pan, Hua Cao, Ming Sun, Jia Shi, Chunhong Jiang, Minghui Chen, Lin Zhou, Guang Ning, Chang Chen, Weiqing Wang","doi":"10.1038/s42255-025-01217-w","DOIUrl":null,"url":null,"abstract":"<p>Noninvasive blood glucose monitoring offers substantial advantages for patients, but current technologies are often not sufficiently accurate for clinical applications or require personalized calibration. Here we report multiple μ-spatially offset Raman spectroscopy, which captures Raman signals at varying skin depths, and show that it accurately detects blood glucose levels in humans. In 35 individuals with or without type 2 diabetes, we first determine the optimal depth for glucose detection to be at or below the capillary-rich dermal–epidermal junction, where we observe a strong correlation between specific Raman bands and venous plasma glucose concentrations. In a second study, comprising 230 participants, we then improve accuracy of our regression model to reach a mean absolute relative difference of 14.6%, without personalized calibration, whereby 99.4% of calculated glucose values fall into clinically acceptable zones of the consensus error grid (zones A and B). These findings highlight the ability and robustness of multiple μ-spatially offset Raman spectroscopy for noninvasive blood glucose measurement in a clinical setting.</p>","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"40 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s42255-025-01217-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Noninvasive blood glucose monitoring offers substantial advantages for patients, but current technologies are often not sufficiently accurate for clinical applications or require personalized calibration. Here we report multiple μ-spatially offset Raman spectroscopy, which captures Raman signals at varying skin depths, and show that it accurately detects blood glucose levels in humans. In 35 individuals with or without type 2 diabetes, we first determine the optimal depth for glucose detection to be at or below the capillary-rich dermal–epidermal junction, where we observe a strong correlation between specific Raman bands and venous plasma glucose concentrations. In a second study, comprising 230 participants, we then improve accuracy of our regression model to reach a mean absolute relative difference of 14.6%, without personalized calibration, whereby 99.4% of calculated glucose values fall into clinically acceptable zones of the consensus error grid (zones A and B). These findings highlight the ability and robustness of multiple μ-spatially offset Raman spectroscopy for noninvasive blood glucose measurement in a clinical setting.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.