Joint Spatial and Frequency Domain Learning for Lightweight Spectral Image Demosaicing

Fangfang Wu;Tao Huang;Junwei Xu;Xun Cao;Weisheng Dong;Le Dong;Guangming Shi
{"title":"Joint Spatial and Frequency Domain Learning for Lightweight Spectral Image Demosaicing","authors":"Fangfang Wu;Tao Huang;Junwei Xu;Xun Cao;Weisheng Dong;Le Dong;Guangming Shi","doi":"10.1109/TIP.2025.3536217","DOIUrl":null,"url":null,"abstract":"Conventional spectral image demosaicing algorithms rely on pixels’ spatial or spectral correlations for reconstruction. Due to the missing data in the multispectral filter array (MSFA), the estimation of spatial or spectral correlations is inaccurate, leading to poor reconstruction results, and these algorithms are time-consuming. Deep learning-based spectral image demosaicing methods directly learn the nonlinear mapping relationship between 2D spectral mosaic images and 3D multispectral images. However, these learning-based methods focused only on learning the mapping relationship in the spatial domain, but neglected valuable image information in the frequency domain, resulting in limited reconstruction quality. To address the above issues, this paper proposes a novel lightweight spectral image demosaicing method based on joint spatial and frequency domain information learning. First, a novel parameter-free spectral image initialization strategy based on the Fourier transform is proposed, which leads to better initialized spectral images and eases the difficulty of subsequent spectral image reconstruction. Furthermore, an efficient spatial-frequency transformer network is proposed, which jointly learns the spatial correlations and the frequency domain characteristics. Compared to existing learning-based spectral image demosaicing methods, the proposed method significantly reduces the number of model parameters and computational complexity. Extensive experiments on simulated and real-world data show that the proposed method notably outperforms existing spectral image demosaicing methods.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1119-1132"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10872792/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional spectral image demosaicing algorithms rely on pixels’ spatial or spectral correlations for reconstruction. Due to the missing data in the multispectral filter array (MSFA), the estimation of spatial or spectral correlations is inaccurate, leading to poor reconstruction results, and these algorithms are time-consuming. Deep learning-based spectral image demosaicing methods directly learn the nonlinear mapping relationship between 2D spectral mosaic images and 3D multispectral images. However, these learning-based methods focused only on learning the mapping relationship in the spatial domain, but neglected valuable image information in the frequency domain, resulting in limited reconstruction quality. To address the above issues, this paper proposes a novel lightweight spectral image demosaicing method based on joint spatial and frequency domain information learning. First, a novel parameter-free spectral image initialization strategy based on the Fourier transform is proposed, which leads to better initialized spectral images and eases the difficulty of subsequent spectral image reconstruction. Furthermore, an efficient spatial-frequency transformer network is proposed, which jointly learns the spatial correlations and the frequency domain characteristics. Compared to existing learning-based spectral image demosaicing methods, the proposed method significantly reduces the number of model parameters and computational complexity. Extensive experiments on simulated and real-world data show that the proposed method notably outperforms existing spectral image demosaicing methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信