Fangfang Wu;Tao Huang;Junwei Xu;Xun Cao;Weisheng Dong;Le Dong;Guangming Shi
{"title":"Joint Spatial and Frequency Domain Learning for Lightweight Spectral Image Demosaicing","authors":"Fangfang Wu;Tao Huang;Junwei Xu;Xun Cao;Weisheng Dong;Le Dong;Guangming Shi","doi":"10.1109/TIP.2025.3536217","DOIUrl":null,"url":null,"abstract":"Conventional spectral image demosaicing algorithms rely on pixels’ spatial or spectral correlations for reconstruction. Due to the missing data in the multispectral filter array (MSFA), the estimation of spatial or spectral correlations is inaccurate, leading to poor reconstruction results, and these algorithms are time-consuming. Deep learning-based spectral image demosaicing methods directly learn the nonlinear mapping relationship between 2D spectral mosaic images and 3D multispectral images. However, these learning-based methods focused only on learning the mapping relationship in the spatial domain, but neglected valuable image information in the frequency domain, resulting in limited reconstruction quality. To address the above issues, this paper proposes a novel lightweight spectral image demosaicing method based on joint spatial and frequency domain information learning. First, a novel parameter-free spectral image initialization strategy based on the Fourier transform is proposed, which leads to better initialized spectral images and eases the difficulty of subsequent spectral image reconstruction. Furthermore, an efficient spatial-frequency transformer network is proposed, which jointly learns the spatial correlations and the frequency domain characteristics. Compared to existing learning-based spectral image demosaicing methods, the proposed method significantly reduces the number of model parameters and computational complexity. Extensive experiments on simulated and real-world data show that the proposed method notably outperforms existing spectral image demosaicing methods.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1119-1132"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10872792/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional spectral image demosaicing algorithms rely on pixels’ spatial or spectral correlations for reconstruction. Due to the missing data in the multispectral filter array (MSFA), the estimation of spatial or spectral correlations is inaccurate, leading to poor reconstruction results, and these algorithms are time-consuming. Deep learning-based spectral image demosaicing methods directly learn the nonlinear mapping relationship between 2D spectral mosaic images and 3D multispectral images. However, these learning-based methods focused only on learning the mapping relationship in the spatial domain, but neglected valuable image information in the frequency domain, resulting in limited reconstruction quality. To address the above issues, this paper proposes a novel lightweight spectral image demosaicing method based on joint spatial and frequency domain information learning. First, a novel parameter-free spectral image initialization strategy based on the Fourier transform is proposed, which leads to better initialized spectral images and eases the difficulty of subsequent spectral image reconstruction. Furthermore, an efficient spatial-frequency transformer network is proposed, which jointly learns the spatial correlations and the frequency domain characteristics. Compared to existing learning-based spectral image demosaicing methods, the proposed method significantly reduces the number of model parameters and computational complexity. Extensive experiments on simulated and real-world data show that the proposed method notably outperforms existing spectral image demosaicing methods.