Temporally-Consistent Surface Reconstruction Using Metrically-Consistent Atlases

Jan Bednarik;Noam Aigerman;Vladimir G. Kim;Siddhartha Chaudhuri;Shaifali Parashar;Mathieu Salzmann;Pascal Fua
{"title":"Temporally-Consistent Surface Reconstruction Using Metrically-Consistent Atlases","authors":"Jan Bednarik;Noam Aigerman;Vladimir G. Kim;Siddhartha Chaudhuri;Shaifali Parashar;Mathieu Salzmann;Pascal Fua","doi":"10.1109/TPAMI.2025.3538776","DOIUrl":null,"url":null,"abstract":"We propose a method for unsupervised reconstruction of a temporally-consistent sequence of surfaces from a sequence of time-evolving point clouds. It yields dense and semantically meaningful correspondences between frames. We represent the reconstructed surfaces as atlases computed by a neural network, which enables us to establish correspondences between frames. The key to making these correspondences semantically meaningful is to guarantee that the metric tensors computed at corresponding points are as similar as possible. We have devised an optimization strategy that makes our method robust to noise and global motions, without <italic>a priori</i> correspondences or pre-alignment steps. As a result, our approach outperforms state-of-the-art ones on several challenging datasets.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 5","pages":"3718-3730"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10870387/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a method for unsupervised reconstruction of a temporally-consistent sequence of surfaces from a sequence of time-evolving point clouds. It yields dense and semantically meaningful correspondences between frames. We represent the reconstructed surfaces as atlases computed by a neural network, which enables us to establish correspondences between frames. The key to making these correspondences semantically meaningful is to guarantee that the metric tensors computed at corresponding points are as similar as possible. We have devised an optimization strategy that makes our method robust to noise and global motions, without a priori correspondences or pre-alignment steps. As a result, our approach outperforms state-of-the-art ones on several challenging datasets.
使用度量一致地图集的时间一致表面重建
我们提出了一种从时间演化点云序列中重建时间一致表面序列的无监督方法。它在帧之间产生密集且语义上有意义的对应。我们将重建的表面表示为由神经网络计算的地图集,这使我们能够建立帧之间的对应关系。使这些对应在语义上有意义的关键是保证在对应点计算的度量张量尽可能相似。我们设计了一种优化策略,使我们的方法对噪声和全局运动具有鲁棒性,而无需先验对应或预对准步骤。因此,我们的方法在几个具有挑战性的数据集上优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信