Rethinking Copy-Paste for Consistency Learning in Medical Image Segmentation

Senlong Huang;Yongxin Ge;Dongfang Liu;Mingjian Hong;Junhan Zhao;Alexander C. Loui
{"title":"Rethinking Copy-Paste for Consistency Learning in Medical Image Segmentation","authors":"Senlong Huang;Yongxin Ge;Dongfang Liu;Mingjian Hong;Junhan Zhao;Alexander C. Loui","doi":"10.1109/TIP.2025.3536208","DOIUrl":null,"url":null,"abstract":"Semi-supervised learning based on consistency learning offers significant promise for enhancing medical image segmentation. Current approaches use copy-paste as an effective data perturbation technique to facilitate weak-to-strong consistency learning. However, these techniques often lead to a decrease in the accuracy of synthetic labels corresponding to the synthetic data and introduce excessive perturbations to the distribution of the training data. Such over-perturbation causes the data distribution to stray from its true distribution, thereby impairing the model’s generalization capabilities as it learns the decision boundaries. We propose a weak-to-strong consistency learning framework that integrally addresses these issues with two primary designs: 1) it emphasizes the use of highly reliable data to enhance the quality of labels in synthetic datasets through cross-copy-pasting between labeled and unlabeled datasets; 2) it employs uncertainty estimation and foreground region constraints to meticulously filter the regions for copy-pasting, thus the copy-paste technique implemented introduces a beneficial perturbation to the training data distribution. Our framework expands the copy-paste method by addressing its inherent limitations, and amplifying the potential of data perturbations for consistency learning. We extensively validated our model using six publicly available medical image segmentation datasets across different diagnostic tasks, including the segmentation of cardiac structures, prostate structures, brain structures, skin lesions, and gastrointestinal polyps. The results demonstrate that our method significantly outperforms state-of-the-art models. For instance, on the PROMISE12 dataset for the prostate structure segmentation task, using only 10% labeled data, our method achieves a 15.31% higher Dice score compared to the baseline models. Our experimental code will be made publicly available at <uri>https://github.com/slhuang24/RCP4CL</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1060-1074"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10871927/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-supervised learning based on consistency learning offers significant promise for enhancing medical image segmentation. Current approaches use copy-paste as an effective data perturbation technique to facilitate weak-to-strong consistency learning. However, these techniques often lead to a decrease in the accuracy of synthetic labels corresponding to the synthetic data and introduce excessive perturbations to the distribution of the training data. Such over-perturbation causes the data distribution to stray from its true distribution, thereby impairing the model’s generalization capabilities as it learns the decision boundaries. We propose a weak-to-strong consistency learning framework that integrally addresses these issues with two primary designs: 1) it emphasizes the use of highly reliable data to enhance the quality of labels in synthetic datasets through cross-copy-pasting between labeled and unlabeled datasets; 2) it employs uncertainty estimation and foreground region constraints to meticulously filter the regions for copy-pasting, thus the copy-paste technique implemented introduces a beneficial perturbation to the training data distribution. Our framework expands the copy-paste method by addressing its inherent limitations, and amplifying the potential of data perturbations for consistency learning. We extensively validated our model using six publicly available medical image segmentation datasets across different diagnostic tasks, including the segmentation of cardiac structures, prostate structures, brain structures, skin lesions, and gastrointestinal polyps. The results demonstrate that our method significantly outperforms state-of-the-art models. For instance, on the PROMISE12 dataset for the prostate structure segmentation task, using only 10% labeled data, our method achieves a 15.31% higher Dice score compared to the baseline models. Our experimental code will be made publicly available at https://github.com/slhuang24/RCP4CL.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信