Quadratic optical response to a magnetic field in the layered magnet CrSBr

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Marie-Christin Heißenbüttel, Pierre-Maurice Piel, Julian Klein, Thorsten Deilmann, Ursula Wurstbauer, Michael Rohlfing
{"title":"Quadratic optical response to a magnetic field in the layered magnet CrSBr","authors":"Marie-Christin Heißenbüttel, Pierre-Maurice Piel, Julian Klein, Thorsten Deilmann, Ursula Wurstbauer, Michael Rohlfing","doi":"10.1103/physrevb.111.075107","DOIUrl":null,"url":null,"abstract":"The optical properties of layered materials are dominated by intralayer excitons; especially for layered antiferromagnets the layer-to-layer charge hopping, and therefore interlayer excitons, are spin forbidden. An external magnetic field, however, can continuously drive the magnetic order towards layer-to-layer ferromagnetic, which opens spin-allowed charge-transfer channels between the layers. Here, we elaborate how their admixture changes the composition and nature of the excitons, leading to an extension over many layers, and causing a quadratic redshift with respect to the external magnetic field in CrSBr. We present a minimal four-band model to elucidate the interplay between the various interaction and coupling mechanisms which is able to reproduce the findings of our G</a:mi>W</a:mi></a:mrow></a:math>–Bethe-Salpeter equation calculations as a function of magnetic field. Our model is generally valid for any coupled layers with different spin directions and the insights help to systematically address excitons and to predict their optical signatures in such systems. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"55 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.075107","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The optical properties of layered materials are dominated by intralayer excitons; especially for layered antiferromagnets the layer-to-layer charge hopping, and therefore interlayer excitons, are spin forbidden. An external magnetic field, however, can continuously drive the magnetic order towards layer-to-layer ferromagnetic, which opens spin-allowed charge-transfer channels between the layers. Here, we elaborate how their admixture changes the composition and nature of the excitons, leading to an extension over many layers, and causing a quadratic redshift with respect to the external magnetic field in CrSBr. We present a minimal four-band model to elucidate the interplay between the various interaction and coupling mechanisms which is able to reproduce the findings of our GW–Bethe-Salpeter equation calculations as a function of magnetic field. Our model is generally valid for any coupled layers with different spin directions and the insights help to systematically address excitons and to predict their optical signatures in such systems. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信