Methane precipitation in ice giant atmospheres

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
D. Toledo, P. Rannou, P. Irwin, B. de Batz de Trenquelléon, M. Roman, V. Apestigue, I. Arruego, M. Yela
{"title":"Methane precipitation in ice giant atmospheres","authors":"D. Toledo, P. Rannou, P. Irwin, B. de Batz de Trenquelléon, M. Roman, V. Apestigue, I. Arruego, M. Yela","doi":"10.1051/0004-6361/202452521","DOIUrl":null,"url":null,"abstract":"<i>Context<i/>. Voyager-2 radio occultation measurements have revealed changes in the atmospheric refractivity within a 2–4 km layer near the 1.2-bar level in Uranus and the 1.6-bar level in Neptune. These changes were attributed to the presence of a methane cloud, consistent with the observation that methane concentration decreases with altitude above these levels, closely following the saturation vapor pressure. However, no clear spectral signatures of such a cloud have been detected thus far in the spectra acquired from both planets.<i>Aims<i/>. We examine methane cloud properties in the atmospheres of the ice giants, including vertical ice distribution, droplet radius, precipitation rates, timescales, and total opacity, employing microphysical simulations under different scenarios.<i>Methods<i/>. We used a one-dimensional (1D) cloud microphysical model to simulate the formation of methane clouds in the ice giants. The simulations include the processes of nucleation, condensation, coagulation, evaporation, and precipitation, with vertical mixing simulated using an eddy-diffusion profile (<i>K<i/><sub>eddy<sub/>).<i>Results<i/>. Our simulations show cloud bases close to 1.24 bars in Uranus and 1.64 bars in Neptune, with droplets up to 100 µm causing high settling velocities and precipitation rates (∼370 mm per Earth year). The high settling velocities limit the total cloud opacity, yielding values at 0.8 µm of ∼0.19 for Uranus and ∼0.35 for Neptune, using <i>K<i/><sub>eddy<sub/> = 0.5 m<sup>2<sup/> s<sup>−1<sup/> and a deep methane mole fraction (<i>μ<i/><sub>CH<sub>4<sub/><sub/>) of 0.04. In addition, lower <i>K<i/><sub>eddy<sub/> or <i>μ<i/><sub>CH<sub>4<sub/><sub/> values result in smaller opacities. Methane supersaturation is promptly removed by condensation, controlling the decline in <i>μ<i/><sub>CH<sub>4<sub/><sub/> with altitude in the troposphere. However, the high settling velocities prevent the formation of a permanent thick cloud. Stratospheric hazes made of ethane or acetylene ice are expected to evaporate completely before reaching the methane condensation level. Since hazes are required for methane heterogeneous nucleation, this suggests either a change in the solid phase properties of the haze particles, inhibiting evaporation, or the presence of photochemical hazes.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"12 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452521","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Voyager-2 radio occultation measurements have revealed changes in the atmospheric refractivity within a 2–4 km layer near the 1.2-bar level in Uranus and the 1.6-bar level in Neptune. These changes were attributed to the presence of a methane cloud, consistent with the observation that methane concentration decreases with altitude above these levels, closely following the saturation vapor pressure. However, no clear spectral signatures of such a cloud have been detected thus far in the spectra acquired from both planets.Aims. We examine methane cloud properties in the atmospheres of the ice giants, including vertical ice distribution, droplet radius, precipitation rates, timescales, and total opacity, employing microphysical simulations under different scenarios.Methods. We used a one-dimensional (1D) cloud microphysical model to simulate the formation of methane clouds in the ice giants. The simulations include the processes of nucleation, condensation, coagulation, evaporation, and precipitation, with vertical mixing simulated using an eddy-diffusion profile (Keddy).Results. Our simulations show cloud bases close to 1.24 bars in Uranus and 1.64 bars in Neptune, with droplets up to 100 µm causing high settling velocities and precipitation rates (∼370 mm per Earth year). The high settling velocities limit the total cloud opacity, yielding values at 0.8 µm of ∼0.19 for Uranus and ∼0.35 for Neptune, using Keddy = 0.5 m2 s−1 and a deep methane mole fraction (μCH4) of 0.04. In addition, lower Keddy or μCH4 values result in smaller opacities. Methane supersaturation is promptly removed by condensation, controlling the decline in μCH4 with altitude in the troposphere. However, the high settling velocities prevent the formation of a permanent thick cloud. Stratospheric hazes made of ethane or acetylene ice are expected to evaporate completely before reaching the methane condensation level. Since hazes are required for methane heterogeneous nucleation, this suggests either a change in the solid phase properties of the haze particles, inhibiting evaporation, or the presence of photochemical hazes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信