Denis A. Kopylov, Torsten Meier, Polina R. Sharapova
{"title":"Theory of Multimode Squeezed Light Generation in Lossy Media","authors":"Denis A. Kopylov, Torsten Meier, Polina R. Sharapova","doi":"10.22331/q-2025-02-04-1621","DOIUrl":null,"url":null,"abstract":"A unified theoretical approach to describe the properties of multimode squeezed light generated in a lossy medium is presented. This approach is valid for Markovian environments and includes both a model of discrete losses based on the beamsplitter approach and a generalized continuous loss model based on the spatial Langevin equation. For an important class of Gaussian states, we derive master equations for the second-order correlation functions and illustrate their solution for both frequency-independent and frequency-dependent losses. Studying the mode structure, we demonstrate that in a lossy environment no broadband basis without quadrature correlations between the different broadband modes exists. Therefore, various techniques and strategies to introduce broadband modes can be considered. We show that the Mercer expansion and the Williamson-Euler decomposition do not provide modes in which the maximal squeezing contained in the system can be measured. In turn, we find a new broadband basis that maximizes squeezing in the lossy system and present an algorithm to construct it.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"37 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-04-1621","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A unified theoretical approach to describe the properties of multimode squeezed light generated in a lossy medium is presented. This approach is valid for Markovian environments and includes both a model of discrete losses based on the beamsplitter approach and a generalized continuous loss model based on the spatial Langevin equation. For an important class of Gaussian states, we derive master equations for the second-order correlation functions and illustrate their solution for both frequency-independent and frequency-dependent losses. Studying the mode structure, we demonstrate that in a lossy environment no broadband basis without quadrature correlations between the different broadband modes exists. Therefore, various techniques and strategies to introduce broadband modes can be considered. We show that the Mercer expansion and the Williamson-Euler decomposition do not provide modes in which the maximal squeezing contained in the system can be measured. In turn, we find a new broadband basis that maximizes squeezing in the lossy system and present an algorithm to construct it.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.