Theory of Multimode Squeezed Light Generation in Lossy Media

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-02-04 DOI:10.22331/q-2025-02-04-1621
Denis A. Kopylov, Torsten Meier, Polina R. Sharapova
{"title":"Theory of Multimode Squeezed Light Generation in Lossy Media","authors":"Denis A. Kopylov, Torsten Meier, Polina R. Sharapova","doi":"10.22331/q-2025-02-04-1621","DOIUrl":null,"url":null,"abstract":"A unified theoretical approach to describe the properties of multimode squeezed light generated in a lossy medium is presented. This approach is valid for Markovian environments and includes both a model of discrete losses based on the beamsplitter approach and a generalized continuous loss model based on the spatial Langevin equation. For an important class of Gaussian states, we derive master equations for the second-order correlation functions and illustrate their solution for both frequency-independent and frequency-dependent losses. Studying the mode structure, we demonstrate that in a lossy environment no broadband basis without quadrature correlations between the different broadband modes exists. Therefore, various techniques and strategies to introduce broadband modes can be considered. We show that the Mercer expansion and the Williamson-Euler decomposition do not provide modes in which the maximal squeezing contained in the system can be measured. In turn, we find a new broadband basis that maximizes squeezing in the lossy system and present an algorithm to construct it.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"37 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-04-1621","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A unified theoretical approach to describe the properties of multimode squeezed light generated in a lossy medium is presented. This approach is valid for Markovian environments and includes both a model of discrete losses based on the beamsplitter approach and a generalized continuous loss model based on the spatial Langevin equation. For an important class of Gaussian states, we derive master equations for the second-order correlation functions and illustrate their solution for both frequency-independent and frequency-dependent losses. Studying the mode structure, we demonstrate that in a lossy environment no broadband basis without quadrature correlations between the different broadband modes exists. Therefore, various techniques and strategies to introduce broadband modes can be considered. We show that the Mercer expansion and the Williamson-Euler decomposition do not provide modes in which the maximal squeezing contained in the system can be measured. In turn, we find a new broadband basis that maximizes squeezing in the lossy system and present an algorithm to construct it.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信