{"title":"Tight bounds for antidistinguishability and circulant sets of pure quantum states","authors":"Nathaniel Johnston, Vincent Russo, Jamie Sikora","doi":"10.22331/q-2025-02-04-1622","DOIUrl":null,"url":null,"abstract":"A set of pure quantum states is said to be antidistinguishable if upon sampling one at random, there exists a measurement to perfectly determine some state that was not sampled. We show that antidistinguishability of a set of $n$ pure states is equivalent to a property of its Gram matrix called $(n-1)$-incoherence, thus establishing a connection with quantum resource theories that lets us apply a wide variety of new tools to antidistinguishability. As a particular application of our result, we present an explicit formula (not involving any semidefinite programming) that determines whether or not a set with a circulant Gram matrix is antidistinguishable. We also show that if all inner products are smaller than $\\sqrt{(n-2)/(2n-2)}$ then the set must be antidistinguishable, and we show that this bound is tight when $n \\leq 4$. We also give a simpler proof that if all the inner products are strictly larger than $(n-2)/(n-1)$, then the set cannot be antidistinguishable, and we show that this bound is tight for all $n$.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"123 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-04-1622","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A set of pure quantum states is said to be antidistinguishable if upon sampling one at random, there exists a measurement to perfectly determine some state that was not sampled. We show that antidistinguishability of a set of $n$ pure states is equivalent to a property of its Gram matrix called $(n-1)$-incoherence, thus establishing a connection with quantum resource theories that lets us apply a wide variety of new tools to antidistinguishability. As a particular application of our result, we present an explicit formula (not involving any semidefinite programming) that determines whether or not a set with a circulant Gram matrix is antidistinguishable. We also show that if all inner products are smaller than $\sqrt{(n-2)/(2n-2)}$ then the set must be antidistinguishable, and we show that this bound is tight when $n \leq 4$. We also give a simpler proof that if all the inner products are strictly larger than $(n-2)/(n-1)$, then the set cannot be antidistinguishable, and we show that this bound is tight for all $n$.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.