{"title":"Quantum friction near the instability threshold","authors":"Daigo Oue, Boris Shapiro, Mário G. Silveirinha","doi":"10.1103/physrevb.111.075403","DOIUrl":null,"url":null,"abstract":"In this work, we develop an analytical framework to understand quantum friction across distinct stability regimes, providing approximate expressions for frictional forces both in the deep stable regime and near the critical threshold of instability. Our primary finding is analytical proof that, near the instability threshold, the quantum friction force diverges logarithmically. This result, verified through numerical simulations, sheds light on the behavior of frictional instabilities as the system approaches criticality. Our findings offer new insights into the role of instabilities, critical divergence, and temperature in frictional dynamics across quantum and classical regimes. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"15 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.075403","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we develop an analytical framework to understand quantum friction across distinct stability regimes, providing approximate expressions for frictional forces both in the deep stable regime and near the critical threshold of instability. Our primary finding is analytical proof that, near the instability threshold, the quantum friction force diverges logarithmically. This result, verified through numerical simulations, sheds light on the behavior of frictional instabilities as the system approaches criticality. Our findings offer new insights into the role of instabilities, critical divergence, and temperature in frictional dynamics across quantum and classical regimes. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter