Takuhiro Otosu, Miyuki Sakaguchi and Shoichi Yamaguchi
{"title":"A macroscopically homogeneous lipid phase exhibits leaflet-specific lipid diffusion in a glass-supported lipid bilayer†","authors":"Takuhiro Otosu, Miyuki Sakaguchi and Shoichi Yamaguchi","doi":"10.1039/D5CP00203F","DOIUrl":null,"url":null,"abstract":"<p >Lipid bilayer is a building block of cellular membranes. Understanding the physicochemical properties of a lipid bilayer and their composition dependence is thus inevitable to infer the biological functions of lipids in cellular membranes. Here, we performed leaflet-specific lipid diffusion analysis to study the structural and dynamical properties of lipids on glass-supported lipid bilayers composed of dioleoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine and cholesterol, especially focusing on the regions where a macroscopically homogeneous phase was observed in the ternary phase diagram. The data showed that the interleaflet coupling and the effect of the solid support were highly dependent on the lipid/cholesterol compositions. We also found a distinctive feature of leaflet-specific lipid diffusion in the region near the critical point. This observation was discussed in terms of the nanoscale heterogeneity.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 9","pages":" 4944-4949"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00203f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid bilayer is a building block of cellular membranes. Understanding the physicochemical properties of a lipid bilayer and their composition dependence is thus inevitable to infer the biological functions of lipids in cellular membranes. Here, we performed leaflet-specific lipid diffusion analysis to study the structural and dynamical properties of lipids on glass-supported lipid bilayers composed of dioleoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine and cholesterol, especially focusing on the regions where a macroscopically homogeneous phase was observed in the ternary phase diagram. The data showed that the interleaflet coupling and the effect of the solid support were highly dependent on the lipid/cholesterol compositions. We also found a distinctive feature of leaflet-specific lipid diffusion in the region near the critical point. This observation was discussed in terms of the nanoscale heterogeneity.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.