Visualization Analysis of Tau Protein in the Brain of Alzheimer's Disease: A Scoping Literature Review.

Dan-Qi Zhang, Xu Yang, Han-Bin Niu, Xu-Chen Sun, Dan-Na Cao, Ang Li, Jin-Huan Yue, Xiao-Ling Li, Qin-Hong Zhang
{"title":"Visualization Analysis of Tau Protein in the Brain of Alzheimer's Disease: A Scoping Literature Review.","authors":"Dan-Qi Zhang, Xu Yang, Han-Bin Niu, Xu-Chen Sun, Dan-Na Cao, Ang Li, Jin-Huan Yue, Xiao-Ling Li, Qin-Hong Zhang","doi":"10.2174/0115672050351995241223065923","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study analyzed the current status, hotspots, and development trends of tau protein research in Alzheimer's disease (AD) and to provide a reference for future research in this field. CiteSpace software was used to scientifically measure and visualize the relevant articles in the field of tau protein in AD brain from the Web of Science Core Collection database from 1991 to 2022.</p><p><strong>Methods: </strong>A total of 568 articles were included, with an exponential growth in the number of articles published from 1991 to 2022, with an average of 17.8 articles per year. The United States is the most productive country in this field, accounting for 46.83% of the total literature. The New York State Institute for Basic Research is the most productive organization, followed by MRC Laboratory Molecular Biology in the UK. The most influential are Kings College London, University of California, San Francisco, and others. Iqbal K is the most productive author.</p><p><strong>Results: </strong>The most productive journal is the Journal of Biological Chemistry, and the journal with the highest impact factor is Acta Neuropathologica. The journal with the highest cumulative impact factor is Nature. The research hotspots mainly focus on the formation and degradation mechanisms of tau protein paired helical filaments and abnormal phosphorylation, AD neurofibrillary tangles and degenerative changes, and model research, mainly involving tau protein abnormal phosphorylation, phosphorylation sites, dephosphorylation, aggregate helical filaments, neurofibrillary tangles mouse models.</p><p><strong>Conclusion: </strong>The research frontier trends mainly focus on the study of pathological changes in tau protein, intervention mechanisms, and the development and practice of clinical therapeutic drugs.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Alzheimer research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672050351995241223065923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: This study analyzed the current status, hotspots, and development trends of tau protein research in Alzheimer's disease (AD) and to provide a reference for future research in this field. CiteSpace software was used to scientifically measure and visualize the relevant articles in the field of tau protein in AD brain from the Web of Science Core Collection database from 1991 to 2022.

Methods: A total of 568 articles were included, with an exponential growth in the number of articles published from 1991 to 2022, with an average of 17.8 articles per year. The United States is the most productive country in this field, accounting for 46.83% of the total literature. The New York State Institute for Basic Research is the most productive organization, followed by MRC Laboratory Molecular Biology in the UK. The most influential are Kings College London, University of California, San Francisco, and others. Iqbal K is the most productive author.

Results: The most productive journal is the Journal of Biological Chemistry, and the journal with the highest impact factor is Acta Neuropathologica. The journal with the highest cumulative impact factor is Nature. The research hotspots mainly focus on the formation and degradation mechanisms of tau protein paired helical filaments and abnormal phosphorylation, AD neurofibrillary tangles and degenerative changes, and model research, mainly involving tau protein abnormal phosphorylation, phosphorylation sites, dephosphorylation, aggregate helical filaments, neurofibrillary tangles mouse models.

Conclusion: The research frontier trends mainly focus on the study of pathological changes in tau protein, intervention mechanisms, and the development and practice of clinical therapeutic drugs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信