Adaptafood: an intelligent system to adapt recipes to specialised diets and healthy lifestyles.

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Multimedia Systems Pub Date : 2025-01-01 Epub Date: 2025-02-01 DOI:10.1007/s00530-025-01667-y
Andrea Morales-Garzón, Karel Gutiérrez-Batista, Maria J Martin-Bautista
{"title":"Adaptafood: an intelligent system to adapt recipes to specialised diets and healthy lifestyles.","authors":"Andrea Morales-Garzón, Karel Gutiérrez-Batista, Maria J Martin-Bautista","doi":"10.1007/s00530-025-01667-y","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents AdaptaFood, a system to adapt recipes to specific dietary constraints. This is a common societal issue due to various dietary needs arising from medical conditions, allergies, or nutritional preferences. AdaptaFood provides recipe adaptations from two inputs: a recipe image (a fine-tuned image-captioning model allows us to extract the ingredients) or a recipe object (we extract the ingredients from the recipe features). For the adaptation, we propose to use an attention-based language sentence model based on BERT to learn the semantics of the ingredients and, therefore, discover the hidden relations among them. Specifically, we use them to perform two tasks: (1) align the food items from several sources to expand recipe information; (2) use the semantic features embedded in the representation vector to detect potential food substitutes for the ingredients. The results show that the model successfully learns domain-specific knowledge after re-training it to the food computing domain. Combining this acquired knowledge with the adopted strategy for sentence representation and food replacement enables the generation of high-quality recipe versions and dealing with the heterogeneity of different-origin food data.</p>","PeriodicalId":51138,"journal":{"name":"Multimedia Systems","volume":"31 1","pages":"87"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-025-01667-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents AdaptaFood, a system to adapt recipes to specific dietary constraints. This is a common societal issue due to various dietary needs arising from medical conditions, allergies, or nutritional preferences. AdaptaFood provides recipe adaptations from two inputs: a recipe image (a fine-tuned image-captioning model allows us to extract the ingredients) or a recipe object (we extract the ingredients from the recipe features). For the adaptation, we propose to use an attention-based language sentence model based on BERT to learn the semantics of the ingredients and, therefore, discover the hidden relations among them. Specifically, we use them to perform two tasks: (1) align the food items from several sources to expand recipe information; (2) use the semantic features embedded in the representation vector to detect potential food substitutes for the ingredients. The results show that the model successfully learns domain-specific knowledge after re-training it to the food computing domain. Combining this acquired knowledge with the adopted strategy for sentence representation and food replacement enables the generation of high-quality recipe versions and dealing with the heterogeneity of different-origin food data.

适应食物:一个智能系统,可以根据特定的饮食和健康的生活方式调整食谱。
本文介绍了AdaptaFood,这是一个使食谱适应特定饮食限制的系统。这是一个常见的社会问题,由于医疗条件,过敏或营养偏好引起的各种饮食需求。AdaptaFood从两个输入提供食谱适配:食谱图像(经过微调的图像字幕模型允许我们提取配料)或食谱对象(我们从食谱特征中提取配料)。对于自适应,我们建议使用基于BERT的基于注意的语言句子模型来学习成分的语义,从而发现它们之间隐藏的关系。具体来说,我们使用它们来执行两个任务:(1)对齐来自多个来源的食品以扩展食谱信息;(2)利用嵌入在表示向量中的语义特征来检测配料的潜在食品替代品。结果表明,将该模型重新训练到食品计算领域后,该模型成功地学习了特定领域的知识。将这些获得的知识与所采用的句子表示和食物替换策略相结合,可以生成高质量的食谱版本,并处理不同来源的食物数据的异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multimedia Systems
Multimedia Systems 工程技术-计算机:理论方法
CiteScore
5.40
自引率
7.70%
发文量
148
审稿时长
4.5 months
期刊介绍: This journal details innovative research ideas, emerging technologies, state-of-the-art methods and tools in all aspects of multimedia computing, communication, storage, and applications. It features theoretical, experimental, and survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信