Models for predicting risk of endometrial cancer: a systematic review.

Bea Harris Forder, Anastasia Ardasheva, Karyna Atha, Hannah Nentwich, Roxanna Abhari, Christiana Kartsonaki
{"title":"Models for predicting risk of endometrial cancer: a systematic review.","authors":"Bea Harris Forder, Anastasia Ardasheva, Karyna Atha, Hannah Nentwich, Roxanna Abhari, Christiana Kartsonaki","doi":"10.1186/s41512-024-00178-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Endometrial cancer (EC) is the most prevalent gynaecological cancer in the UK with a rising incidence. Various models exist to predict the risk of developing EC, for different settings and prediction timeframes. This systematic review aims to provide a summary of models and assess their characteristics and performance.</p><p><strong>Methods: </strong>A systematic search of the MEDLINE and Embase (OVID) databases was used to identify risk prediction models related to EC and studies validating these models. Papers relating to predicting the risk of a future diagnosis of EC were selected for inclusion. Study characteristics, variables included in the model, methods used, and model performance, were extracted. The Prediction model Risk-of-Bias Assessment Tool was used to assess model quality.</p><p><strong>Results: </strong>Twenty studies describing 19 models were included. Ten were designed for the general population and nine for high-risk populations. Three models were developed for premenopausal women and two for postmenopausal women. Logistic regression was the most used development method. Three models, all in the general population, had a low risk of bias and all models had high applicability. Most models had moderate (area under the receiver operating characteristic curve (AUC) 0.60-0.80) or high predictive ability (AUC > 0.80) with AUCs ranging from 0.56 to 0.92. Calibration was assessed for five models. Two of these, the Hippisley-Cox and Coupland QCancer models, had high predictive ability and were well calibrated; these models also received a low risk of bias rating.</p><p><strong>Conclusions: </strong>Several models of moderate-high predictive ability exist for predicting the risk of EC, but study quality varies, with most models at high risk of bias. External validation of well-performing models in large, diverse cohorts is needed to assess their utility.</p><p><strong>Registration: </strong>The protocol for this review is available on PROSPERO (CRD42022303085).</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"9 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792366/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and prognostic research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41512-024-00178-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Endometrial cancer (EC) is the most prevalent gynaecological cancer in the UK with a rising incidence. Various models exist to predict the risk of developing EC, for different settings and prediction timeframes. This systematic review aims to provide a summary of models and assess their characteristics and performance.

Methods: A systematic search of the MEDLINE and Embase (OVID) databases was used to identify risk prediction models related to EC and studies validating these models. Papers relating to predicting the risk of a future diagnosis of EC were selected for inclusion. Study characteristics, variables included in the model, methods used, and model performance, were extracted. The Prediction model Risk-of-Bias Assessment Tool was used to assess model quality.

Results: Twenty studies describing 19 models were included. Ten were designed for the general population and nine for high-risk populations. Three models were developed for premenopausal women and two for postmenopausal women. Logistic regression was the most used development method. Three models, all in the general population, had a low risk of bias and all models had high applicability. Most models had moderate (area under the receiver operating characteristic curve (AUC) 0.60-0.80) or high predictive ability (AUC > 0.80) with AUCs ranging from 0.56 to 0.92. Calibration was assessed for five models. Two of these, the Hippisley-Cox and Coupland QCancer models, had high predictive ability and were well calibrated; these models also received a low risk of bias rating.

Conclusions: Several models of moderate-high predictive ability exist for predicting the risk of EC, but study quality varies, with most models at high risk of bias. External validation of well-performing models in large, diverse cohorts is needed to assess their utility.

Registration: The protocol for this review is available on PROSPERO (CRD42022303085).

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信