GATA1-deficient human pluripotent stem cells generate neutrophils with improved antifungal immunity that is mediated by the integrin CD18.

IF 5.5 1区 医学 Q1 MICROBIOLOGY
PLoS Pathogens Pub Date : 2025-02-03 eCollection Date: 2025-02-01 DOI:10.1371/journal.ppat.1012654
Andrew S Wagner, Frances M Smith, David A Bennin, James A Votava, Rupsa Datta, Morgan A Giese, Wenxuan Zhao, Melissa C Skala, Jing Fan, Nancy P Keller, Anna Huttenlocher
{"title":"GATA1-deficient human pluripotent stem cells generate neutrophils with improved antifungal immunity that is mediated by the integrin CD18.","authors":"Andrew S Wagner, Frances M Smith, David A Bennin, James A Votava, Rupsa Datta, Morgan A Giese, Wenxuan Zhao, Melissa C Skala, Jing Fan, Nancy P Keller, Anna Huttenlocher","doi":"10.1371/journal.ppat.1012654","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils are critical for host defense against fungi. However, the short life span and lack of genetic tractability of primary human neutrophils has limited in vitro analysis of neutrophil-fungal interactions. Human induced pluripotent stem cell (iPSC)-derived neutrophils (iNeutrophils) provide a genetically tractable system to study host defense responses of human neutrophils. Here, we show that deletion of the transcription factor GATA1 from human iPSCs results in iNeutrophils with improved antifungal activity against Aspergillus fumigatus. GATA1-knockout (KO) iNeutrophils have increased maturation, antifungal pattern recognition receptor expression and have improved neutrophil effector functions compared to wild-type iNeutrophils. iNeutrophils also show a shift in their metabolism following stimulation with fungal β-glucan to the pentose phosphate pathway (PPP), similar to primary human neutrophils. Furthermore, we show that deletion of the integrin CD18 attenuates the ability of GATA1-KO iNeutrophils to kill A. fumigatus but is not necessary for the metabolic shift. Collectively, these findings support iNeutrophils as a robust system to study human neutrophil antifungal immunity and has identified specific roles for CD18 in the defense response.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 2","pages":"e1012654"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825098/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012654","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neutrophils are critical for host defense against fungi. However, the short life span and lack of genetic tractability of primary human neutrophils has limited in vitro analysis of neutrophil-fungal interactions. Human induced pluripotent stem cell (iPSC)-derived neutrophils (iNeutrophils) provide a genetically tractable system to study host defense responses of human neutrophils. Here, we show that deletion of the transcription factor GATA1 from human iPSCs results in iNeutrophils with improved antifungal activity against Aspergillus fumigatus. GATA1-knockout (KO) iNeutrophils have increased maturation, antifungal pattern recognition receptor expression and have improved neutrophil effector functions compared to wild-type iNeutrophils. iNeutrophils also show a shift in their metabolism following stimulation with fungal β-glucan to the pentose phosphate pathway (PPP), similar to primary human neutrophils. Furthermore, we show that deletion of the integrin CD18 attenuates the ability of GATA1-KO iNeutrophils to kill A. fumigatus but is not necessary for the metabolic shift. Collectively, these findings support iNeutrophils as a robust system to study human neutrophil antifungal immunity and has identified specific roles for CD18 in the defense response.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信