Andrew S Wagner, Frances M Smith, David A Bennin, James A Votava, Rupsa Datta, Morgan A Giese, Wenxuan Zhao, Melissa C Skala, Jing Fan, Nancy P Keller, Anna Huttenlocher
{"title":"GATA1-deficient human pluripotent stem cells generate neutrophils with improved antifungal immunity that is mediated by the integrin CD18.","authors":"Andrew S Wagner, Frances M Smith, David A Bennin, James A Votava, Rupsa Datta, Morgan A Giese, Wenxuan Zhao, Melissa C Skala, Jing Fan, Nancy P Keller, Anna Huttenlocher","doi":"10.1371/journal.ppat.1012654","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils are critical for host defense against fungi. However, the short life span and lack of genetic tractability of primary human neutrophils has limited in vitro analysis of neutrophil-fungal interactions. Human induced pluripotent stem cell (iPSC)-derived neutrophils (iNeutrophils) provide a genetically tractable system to study host defense responses of human neutrophils. Here, we show that deletion of the transcription factor GATA1 from human iPSCs results in iNeutrophils with improved antifungal activity against Aspergillus fumigatus. GATA1-knockout (KO) iNeutrophils have increased maturation, antifungal pattern recognition receptor expression and have improved neutrophil effector functions compared to wild-type iNeutrophils. iNeutrophils also show a shift in their metabolism following stimulation with fungal β-glucan to the pentose phosphate pathway (PPP), similar to primary human neutrophils. Furthermore, we show that deletion of the integrin CD18 attenuates the ability of GATA1-KO iNeutrophils to kill A. fumigatus but is not necessary for the metabolic shift. Collectively, these findings support iNeutrophils as a robust system to study human neutrophil antifungal immunity and has identified specific roles for CD18 in the defense response.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 2","pages":"e1012654"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825098/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012654","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neutrophils are critical for host defense against fungi. However, the short life span and lack of genetic tractability of primary human neutrophils has limited in vitro analysis of neutrophil-fungal interactions. Human induced pluripotent stem cell (iPSC)-derived neutrophils (iNeutrophils) provide a genetically tractable system to study host defense responses of human neutrophils. Here, we show that deletion of the transcription factor GATA1 from human iPSCs results in iNeutrophils with improved antifungal activity against Aspergillus fumigatus. GATA1-knockout (KO) iNeutrophils have increased maturation, antifungal pattern recognition receptor expression and have improved neutrophil effector functions compared to wild-type iNeutrophils. iNeutrophils also show a shift in their metabolism following stimulation with fungal β-glucan to the pentose phosphate pathway (PPP), similar to primary human neutrophils. Furthermore, we show that deletion of the integrin CD18 attenuates the ability of GATA1-KO iNeutrophils to kill A. fumigatus but is not necessary for the metabolic shift. Collectively, these findings support iNeutrophils as a robust system to study human neutrophil antifungal immunity and has identified specific roles for CD18 in the defense response.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.