Insights into quinoa endophytes: core bacterial communities reveal high stability to water stress and genotypic variation.

IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY
Isaac Maestro-Gaitán, Miguel Redondo-Nieto, Sara González-Bodí, Laura Rodríguez-Casillas, Javier Matías, Luis Bolaños, María Reguera
{"title":"Insights into quinoa endophytes: core bacterial communities reveal high stability to water stress and genotypic variation.","authors":"Isaac Maestro-Gaitán, Miguel Redondo-Nieto, Sara González-Bodí, Laura Rodríguez-Casillas, Javier Matías, Luis Bolaños, María Reguera","doi":"10.1186/s40793-025-00673-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Plant endophytes, comprising non-pathogenic bacteria, fungi, and archaea, inhabit various plant parts, including roots, stems, leaves, and seeds. These microorganisms play a crucial role in plant development by enhancing germination, growth, and stress resilience. Seed endophytes, in particular, represent the most adapted and conserved segment of plant microbiota, significantly influencing the initial stages of plant growth and microbial community establishment. This study investigates the impact of environmental and genotypic factors on the endophytic communities of Chenopodium quinoa Willd. (quinoa), a crop notable for its adaptability and nutritional value.</p><p><strong>Results: </strong>We aimed to characterize the core endophytic communities in quinoa seeds and roots from two distinct genotypes under well-watered (WW) and water-deficit (WD) conditions, utilizing various soil infusions as inoculants to explore potential changes in these endophytes. Our findings reveal distinct changes with quinoa seeds exhibiting a high degree of conservation in their endophytic microbiome, even between maternal and offspring seeds, with specific bacterial taxa showing only minor differences. Tissue specificity emerged as a key factor, with seeds maintaining a stable microbial community, while roots exhibited more pronounced shifts, highlighting the tissue-dependent patterns of microbial enrichment.</p><p><strong>Conclusions: </strong>The results highlight the stability and conservation of endophytic communities in quinoa seeds, even under varying water conditions and across different genotypes, emphasizing the role of tissue specificity in shaping microbial associations. These findings suggest that quinoa-associated endophytes, particularly those conserved in seeds, may play a crucial role in enhancing drought resilience. Understanding the dynamics of plant-microbe interactions in quinoa is vital for developing stress-resilient crop varieties, supporting sustainable agricultural practices, and ensuring food security in the face of climate change and environmental challenges.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"20 1","pages":"16"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-025-00673-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Plant endophytes, comprising non-pathogenic bacteria, fungi, and archaea, inhabit various plant parts, including roots, stems, leaves, and seeds. These microorganisms play a crucial role in plant development by enhancing germination, growth, and stress resilience. Seed endophytes, in particular, represent the most adapted and conserved segment of plant microbiota, significantly influencing the initial stages of plant growth and microbial community establishment. This study investigates the impact of environmental and genotypic factors on the endophytic communities of Chenopodium quinoa Willd. (quinoa), a crop notable for its adaptability and nutritional value.

Results: We aimed to characterize the core endophytic communities in quinoa seeds and roots from two distinct genotypes under well-watered (WW) and water-deficit (WD) conditions, utilizing various soil infusions as inoculants to explore potential changes in these endophytes. Our findings reveal distinct changes with quinoa seeds exhibiting a high degree of conservation in their endophytic microbiome, even between maternal and offspring seeds, with specific bacterial taxa showing only minor differences. Tissue specificity emerged as a key factor, with seeds maintaining a stable microbial community, while roots exhibited more pronounced shifts, highlighting the tissue-dependent patterns of microbial enrichment.

Conclusions: The results highlight the stability and conservation of endophytic communities in quinoa seeds, even under varying water conditions and across different genotypes, emphasizing the role of tissue specificity in shaping microbial associations. These findings suggest that quinoa-associated endophytes, particularly those conserved in seeds, may play a crucial role in enhancing drought resilience. Understanding the dynamics of plant-microbe interactions in quinoa is vital for developing stress-resilient crop varieties, supporting sustainable agricultural practices, and ensuring food security in the face of climate change and environmental challenges.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Microbiome
Environmental Microbiome Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
2.50%
发文量
55
审稿时长
13 weeks
期刊介绍: Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信