Humanin reduces nucleus pulposus cells ferroptosis to alleviate intervertebral disc degeneration: An in vitro and in vivo study

IF 5.9 1区 医学 Q1 ORTHOPEDICS
Daxue Zhu , Zhaoheng Wang , Yanhu Li , Shijie Chen , Xuewen Kang
{"title":"Humanin reduces nucleus pulposus cells ferroptosis to alleviate intervertebral disc degeneration: An in vitro and in vivo study","authors":"Daxue Zhu ,&nbsp;Zhaoheng Wang ,&nbsp;Yanhu Li ,&nbsp;Shijie Chen ,&nbsp;Xuewen Kang","doi":"10.1016/j.jot.2024.12.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Intervertebral disc degeneration (IDD) is a prevalent etiology of low back pain in the global adult population, leading to considerable morbidity and healthcare costs. Existing therapeutic modalities for IDD remain constrained. Ferroptosis in the nucleus pulposus (NP) cells emerges as a pivotal contributor to IDD. Humanin (HN), a mitochondrial-secreted peptide, is intricately linked to age-related maladies and showcases antioxidant, anti-inflammatory, and anti-apoptotic properties. Nonetheless, its precise involvement in IDD remains enigmatic.</div></div><div><h3>Methods</h3><div>The expression profile of HN in IDD was scrutinized utilizing human NP cell cultures and an IDD rat model (n = 5). The therapeutic efficacy of HN in rats was assessed via MRI and histological evaluation, alongside an exploration of the molecular underpinnings of HN's therapeutic actions in IDD management.</div></div><div><h3>Results</h3><div>This pioneering study unveiled a downregulation of HN expression in IDD patients, a finding corroborated through cell and rat IDD models. Furthermore, it was ascertained that exogenous HN could trigger endogenous HN expression, impede the JAK2/STAT3 and NF-κB pathways, thereby mitigating erastin-induced ferroptosis in NP cells, contingent upon the upregulation of HSP27 expression. Moreover, the study validated the role of HN in preserving mitochondrial homeostasis, curbing mitochondrial reactive oxygen species (mtROS) generation and mtDNA leakage, consequently hindering mtDNA binding to TLR9 and subsequent activation of the NF-κB pathway. Notably, in vivo rat experiments underscored the efficacy of HN treatment in ameliorating IDD progression induced by annulus fibrosus puncture.</div></div><div><h3>Conclusion</h3><div>By assuaging ferroptosis in NP cells, HN exhibits promise as a viable candidate for IDD treatment, capable of impeding disease advancement. <strong>The translational potential of this article</strong>: This study highlights the importance and effectiveness of HN in alleviating IDD by inhibiting ferroptosis in NP cells. The addition of exogenous HN may represent a potential therapeutic strategy for treating IDD.</div></div>","PeriodicalId":16636,"journal":{"name":"Journal of Orthopaedic Translation","volume":"50 ","pages":"Pages 274-294"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Translation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214031X2400161X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Intervertebral disc degeneration (IDD) is a prevalent etiology of low back pain in the global adult population, leading to considerable morbidity and healthcare costs. Existing therapeutic modalities for IDD remain constrained. Ferroptosis in the nucleus pulposus (NP) cells emerges as a pivotal contributor to IDD. Humanin (HN), a mitochondrial-secreted peptide, is intricately linked to age-related maladies and showcases antioxidant, anti-inflammatory, and anti-apoptotic properties. Nonetheless, its precise involvement in IDD remains enigmatic.

Methods

The expression profile of HN in IDD was scrutinized utilizing human NP cell cultures and an IDD rat model (n = 5). The therapeutic efficacy of HN in rats was assessed via MRI and histological evaluation, alongside an exploration of the molecular underpinnings of HN's therapeutic actions in IDD management.

Results

This pioneering study unveiled a downregulation of HN expression in IDD patients, a finding corroborated through cell and rat IDD models. Furthermore, it was ascertained that exogenous HN could trigger endogenous HN expression, impede the JAK2/STAT3 and NF-κB pathways, thereby mitigating erastin-induced ferroptosis in NP cells, contingent upon the upregulation of HSP27 expression. Moreover, the study validated the role of HN in preserving mitochondrial homeostasis, curbing mitochondrial reactive oxygen species (mtROS) generation and mtDNA leakage, consequently hindering mtDNA binding to TLR9 and subsequent activation of the NF-κB pathway. Notably, in vivo rat experiments underscored the efficacy of HN treatment in ameliorating IDD progression induced by annulus fibrosus puncture.

Conclusion

By assuaging ferroptosis in NP cells, HN exhibits promise as a viable candidate for IDD treatment, capable of impeding disease advancement. The translational potential of this article: This study highlights the importance and effectiveness of HN in alleviating IDD by inhibiting ferroptosis in NP cells. The addition of exogenous HN may represent a potential therapeutic strategy for treating IDD.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Orthopaedic Translation
Journal of Orthopaedic Translation Medicine-Orthopedics and Sports Medicine
CiteScore
11.80
自引率
13.60%
发文量
91
审稿时长
29 days
期刊介绍: The Journal of Orthopaedic Translation (JOT) is the official peer-reviewed, open access journal of the Chinese Speaking Orthopaedic Society (CSOS) and the International Chinese Musculoskeletal Research Society (ICMRS). It is published quarterly, in January, April, July and October, by Elsevier.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信