Therapeutic inhibition of PHF21B attenuates pathological cardiac hypertrophy by inhibiting the BMP4/GSK3β/β-catenin axis

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Siqi Sheng , Guannan Liu , Pengcheng Lv , Jialiang Liu , Lin Lv , Meng Yuan , Dankun Luo , Jie Xiong , Pengwei Dong , Jingyue Zhang , Baodong Xie , Zengxiang Dong , Yuanqi Shi
{"title":"Therapeutic inhibition of PHF21B attenuates pathological cardiac hypertrophy by inhibiting the BMP4/GSK3β/β-catenin axis","authors":"Siqi Sheng ,&nbsp;Guannan Liu ,&nbsp;Pengcheng Lv ,&nbsp;Jialiang Liu ,&nbsp;Lin Lv ,&nbsp;Meng Yuan ,&nbsp;Dankun Luo ,&nbsp;Jie Xiong ,&nbsp;Pengwei Dong ,&nbsp;Jingyue Zhang ,&nbsp;Baodong Xie ,&nbsp;Zengxiang Dong ,&nbsp;Yuanqi Shi","doi":"10.1016/j.ejphar.2025.177346","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Pathological cardiac hypertrophy is a hallmark of various cardiovascular diseases, unfortunately, effective targeted therapies are still lacking. This study aims to verify the role of plant-homeodomain finger protein21b (PHF21B) in pathological cardiac hypertrophy.</div></div><div><h3>Methods</h3><div>Angiotensin-II (Ang II) induced cardiomyocyte hypertrophy <em>in vitro</em>, and short hairpin (sh) RNA-mediated PHF21B silencing was used to assess its role in hypertrophic growth. Transverse aortic constriction (TAC) was performed to induce cardiac hypertrophy in mice. To assess the effect of PHF21B on pathological cardiac hypertrophy <em>in vivo</em>, the myocardium was transduced with adeno-associated virus 9 (AAV9) encoding a <em>PHF21B-</em>targeting shRNA for gene ablation. Chromatin immunoprecipitation-polymerase chain reaction (PCR), western blotting, and quantitative reverse transcription-PCR were performed to elucidate the mechanisms through which PHF21B regulates pathological cardiac hypertrophy.</div></div><div><h3>Results</h3><div>This investigation revealed that PHF21B levels were elevated in patients with pathological cardiac hypertrophy. PHF21B inhibition alleviated pressure overload-induced cardiac dysfunction and hypertrophy <em>in vivo</em>, and Ang-II-induced cardiomyocyte hypertrophy <em>in vitro</em>. Genome-wide transcriptome analysis and biological experiments revealed that PHF21B silencing inhibited the Wnt signalling pathway, include the protein expression of β-catenin, and the phosphorylation of glycogen synthase kinase (GSK)-3β. Mechanistically, PHF21B influenced the translation of bone morphogenetic protein (BMP)-4 and facilitated the activation of the GSK3β/β-catenin pathway. The anti-hypertrophic effects of PHF21B knockdown were blocked by BMP4 supplementation.</div></div><div><h3>Conclusions</h3><div>Collectively, our results demonstrated that PHF21B is contributes to pathological cardiac hypertrophy by regulating BMP4 expression and the GSK3β/β-catenin pathway. The inhibition of PHF21B is a potential new therapeutic strategy to mitigate pathological cardiiac hypertrophy.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"991 ","pages":"Article 177346"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925000998","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Pathological cardiac hypertrophy is a hallmark of various cardiovascular diseases, unfortunately, effective targeted therapies are still lacking. This study aims to verify the role of plant-homeodomain finger protein21b (PHF21B) in pathological cardiac hypertrophy.

Methods

Angiotensin-II (Ang II) induced cardiomyocyte hypertrophy in vitro, and short hairpin (sh) RNA-mediated PHF21B silencing was used to assess its role in hypertrophic growth. Transverse aortic constriction (TAC) was performed to induce cardiac hypertrophy in mice. To assess the effect of PHF21B on pathological cardiac hypertrophy in vivo, the myocardium was transduced with adeno-associated virus 9 (AAV9) encoding a PHF21B-targeting shRNA for gene ablation. Chromatin immunoprecipitation-polymerase chain reaction (PCR), western blotting, and quantitative reverse transcription-PCR were performed to elucidate the mechanisms through which PHF21B regulates pathological cardiac hypertrophy.

Results

This investigation revealed that PHF21B levels were elevated in patients with pathological cardiac hypertrophy. PHF21B inhibition alleviated pressure overload-induced cardiac dysfunction and hypertrophy in vivo, and Ang-II-induced cardiomyocyte hypertrophy in vitro. Genome-wide transcriptome analysis and biological experiments revealed that PHF21B silencing inhibited the Wnt signalling pathway, include the protein expression of β-catenin, and the phosphorylation of glycogen synthase kinase (GSK)-3β. Mechanistically, PHF21B influenced the translation of bone morphogenetic protein (BMP)-4 and facilitated the activation of the GSK3β/β-catenin pathway. The anti-hypertrophic effects of PHF21B knockdown were blocked by BMP4 supplementation.

Conclusions

Collectively, our results demonstrated that PHF21B is contributes to pathological cardiac hypertrophy by regulating BMP4 expression and the GSK3β/β-catenin pathway. The inhibition of PHF21B is a potential new therapeutic strategy to mitigate pathological cardiiac hypertrophy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
文献相关原料
公司名称
产品信息
索莱宝
Masson’s trichrome
索莱宝
hematoxylin-eosin (H&E)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信