Extreme events in the Higgs oscillator: A dynamical study and forecasting approach.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-02-01 DOI:10.1063/5.0248180
Wasif Ahamed M, Kavitha R, Chithiika Ruby V, Sathish Aravindh M, Venkatesan A, Lakshmanan M
{"title":"Extreme events in the Higgs oscillator: A dynamical study and forecasting approach.","authors":"Wasif Ahamed M, Kavitha R, Chithiika Ruby V, Sathish Aravindh M, Venkatesan A, Lakshmanan M","doi":"10.1063/5.0248180","DOIUrl":null,"url":null,"abstract":"<p><p>Many dynamical systems exhibit unexpected large amplitude excursions in the chronological progression of a state variable. In the present work, we consider the dynamics associated with the one-dimensional Higgs oscillator, which is realized through gnomonic projection of a harmonic oscillator defined on a spherical space of constant curvature onto a Euclidean plane, which is tangent to the spherical space. While studying the dynamics of such a Higgs oscillator subjected to damping and an external forcing, various bifurcation phenomena, such as symmetry breaking, period doubling, and intermittency crises are encountered. As the driven parameter increases, the route to chaos takes place via intermittency crisis, and we also identify the occurrence of extreme events due to the interior crisis. The study of probability distribution also confirms the occurrence of extreme events. Finally, we train the long short-term memory neural network model with the time-series data to forecast extreme events.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0248180","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Many dynamical systems exhibit unexpected large amplitude excursions in the chronological progression of a state variable. In the present work, we consider the dynamics associated with the one-dimensional Higgs oscillator, which is realized through gnomonic projection of a harmonic oscillator defined on a spherical space of constant curvature onto a Euclidean plane, which is tangent to the spherical space. While studying the dynamics of such a Higgs oscillator subjected to damping and an external forcing, various bifurcation phenomena, such as symmetry breaking, period doubling, and intermittency crises are encountered. As the driven parameter increases, the route to chaos takes place via intermittency crisis, and we also identify the occurrence of extreme events due to the interior crisis. The study of probability distribution also confirms the occurrence of extreme events. Finally, we train the long short-term memory neural network model with the time-series data to forecast extreme events.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信