Wasif Ahamed M, Kavitha R, Chithiika Ruby V, Sathish Aravindh M, Venkatesan A, Lakshmanan M
{"title":"Extreme events in the Higgs oscillator: A dynamical study and forecasting approach.","authors":"Wasif Ahamed M, Kavitha R, Chithiika Ruby V, Sathish Aravindh M, Venkatesan A, Lakshmanan M","doi":"10.1063/5.0248180","DOIUrl":null,"url":null,"abstract":"<p><p>Many dynamical systems exhibit unexpected large amplitude excursions in the chronological progression of a state variable. In the present work, we consider the dynamics associated with the one-dimensional Higgs oscillator, which is realized through gnomonic projection of a harmonic oscillator defined on a spherical space of constant curvature onto a Euclidean plane, which is tangent to the spherical space. While studying the dynamics of such a Higgs oscillator subjected to damping and an external forcing, various bifurcation phenomena, such as symmetry breaking, period doubling, and intermittency crises are encountered. As the driven parameter increases, the route to chaos takes place via intermittency crisis, and we also identify the occurrence of extreme events due to the interior crisis. The study of probability distribution also confirms the occurrence of extreme events. Finally, we train the long short-term memory neural network model with the time-series data to forecast extreme events.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0248180","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Many dynamical systems exhibit unexpected large amplitude excursions in the chronological progression of a state variable. In the present work, we consider the dynamics associated with the one-dimensional Higgs oscillator, which is realized through gnomonic projection of a harmonic oscillator defined on a spherical space of constant curvature onto a Euclidean plane, which is tangent to the spherical space. While studying the dynamics of such a Higgs oscillator subjected to damping and an external forcing, various bifurcation phenomena, such as symmetry breaking, period doubling, and intermittency crises are encountered. As the driven parameter increases, the route to chaos takes place via intermittency crisis, and we also identify the occurrence of extreme events due to the interior crisis. The study of probability distribution also confirms the occurrence of extreme events. Finally, we train the long short-term memory neural network model with the time-series data to forecast extreme events.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.