{"title":"Cell-type deconvolution for bulk RNA-seq data using single-cell reference: a comparative analysis and recommendation guideline.","authors":"Xintian Xu, Rui Li, Ouyang Mo, Kai Liu, Justin Li, Pei Hao","doi":"10.1093/bib/bbaf031","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate estimation of cell type proportions in tissues is crucial for various downstream analyses. With the increasing availability of single-cell sequencing data, numerous deconvolution methods that use single-cell RNA sequencing data as a reference have been developed. However, a unified understanding of how these deconvolution approaches perform in practical applications is still lacking. To address this, we systematically assessed the accuracy and robustness of nine deconvolution methods that use single-cell RNA sequencing data as a reference, evaluating them on real bulk data with cell proportions verified through flow cytometry, as well as simulated bulk data generated from five single-cell RNA sequencing datasets. Our study highlights the importance of several factors-including reference dataset construction strategies, dataset size, cell type subdivision, and cell type inconsistency-on the accuracy and robustness of deconvolution results. We also propose a set of recommended guidelines for software users in diverse scenarios.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf031","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate estimation of cell type proportions in tissues is crucial for various downstream analyses. With the increasing availability of single-cell sequencing data, numerous deconvolution methods that use single-cell RNA sequencing data as a reference have been developed. However, a unified understanding of how these deconvolution approaches perform in practical applications is still lacking. To address this, we systematically assessed the accuracy and robustness of nine deconvolution methods that use single-cell RNA sequencing data as a reference, evaluating them on real bulk data with cell proportions verified through flow cytometry, as well as simulated bulk data generated from five single-cell RNA sequencing datasets. Our study highlights the importance of several factors-including reference dataset construction strategies, dataset size, cell type subdivision, and cell type inconsistency-on the accuracy and robustness of deconvolution results. We also propose a set of recommended guidelines for software users in diverse scenarios.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.