Validation of a 3D printed bolus for radiotherapy: a proof-of-concept study.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
A C Ciobanu, L C Petcu, F Járai-Szabó, Z Bálint
{"title":"Validation of a 3D printed bolus for radiotherapy: a proof-of-concept study.","authors":"A C Ciobanu, L C Petcu, F Járai-Szabó, Z Bálint","doi":"10.1088/2057-1976/adb15d","DOIUrl":null,"url":null,"abstract":"<p><p>3D-printed boluses in radiation therapy are of increasing interest for enhancing treatment precision and patient comfort. A comprehensive clinical validation of these boluses remains to be established. This study aims to confirm the effectiveness of a 3D-printed bolus through a proof-of-concept comparative validation, by implementing in a clinical setting a bolus made of PLA and designed to ensure uniform dose coverage for a case in the eye region. In this study the 3D-printed bolus was compared to two commercially available boluses (one thermoplastic and one skin type) by using a refecence where no bolus was present (with the optimal dose distribution scenario). All boluses were placed on an anthropomorphic head phantom and BeOSL detectors were used to measure dose values to determine the level of their effectiveness on delivery. During the scanning process, a thermoplastic mask was used to prevent bolus movement and to accurately reproduce clinical scenarios. Differences in dose values at D<sub>max</sub>and D<sub>50%</sub>revealed the performance of each bolus. The treatment planning system (TPS) and BeOSL readings for the 3D printed bolus were within 2% (the clinical tolerance), with 0.66% dose difference for the customized 3D-printed bolus. Although the thermoplastic bolus had the closest value to the detector reading, with a score of 0.30%, this result was influenced by improper shaping of the bolus on the phantom and the presence of a wide air gap, which caused lack of eye covering. Whereas, the skin bolus, due to higher volume of air between phantom surface and bolus, showed a 1.29% dose difference between the TPS values and the OSL detector readings. We provide a comparative validation for the use of 3D printed boluses and highlight that proper bolus fitting is essential in clinical settings to avoid air gaps and to maintain dose distribution over multiple treatment sessions.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adb15d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

3D-printed boluses in radiation therapy are of increasing interest for enhancing treatment precision and patient comfort. A comprehensive clinical validation of these boluses remains to be established. This study aims to confirm the effectiveness of a 3D-printed bolus through a proof-of-concept comparative validation, by implementing in a clinical setting a bolus made of PLA and designed to ensure uniform dose coverage for a case in the eye region. In this study the 3D-printed bolus was compared to two commercially available boluses (one thermoplastic and one skin type) by using a refecence where no bolus was present (with the optimal dose distribution scenario). All boluses were placed on an anthropomorphic head phantom and BeOSL detectors were used to measure dose values to determine the level of their effectiveness on delivery. During the scanning process, a thermoplastic mask was used to prevent bolus movement and to accurately reproduce clinical scenarios. Differences in dose values at Dmaxand D50%revealed the performance of each bolus. The treatment planning system (TPS) and BeOSL readings for the 3D printed bolus were within 2% (the clinical tolerance), with 0.66% dose difference for the customized 3D-printed bolus. Although the thermoplastic bolus had the closest value to the detector reading, with a score of 0.30%, this result was influenced by improper shaping of the bolus on the phantom and the presence of a wide air gap, which caused lack of eye covering. Whereas, the skin bolus, due to higher volume of air between phantom surface and bolus, showed a 1.29% dose difference between the TPS values and the OSL detector readings. We provide a comparative validation for the use of 3D printed boluses and highlight that proper bolus fitting is essential in clinical settings to avoid air gaps and to maintain dose distribution over multiple treatment sessions.

3D打印放射治疗丸的验证:概念验证研究。
在放射治疗中,3d打印丸剂对提高治疗精度和患者舒适度越来越感兴趣。这些丸剂的全面临床验证仍有待建立。本研究旨在通过概念验证比较验证来确认3d打印丸剂的有效性,通过在临床环境中实施由聚乳酸制成的丸剂,并设计用于确保眼部区域病例的均匀剂量覆盖。在本研究中,将3d打印的丸剂与两种市售的丸剂(一种热塑性和一种皮肤类型)进行比较,使用不存在丸剂的参考(具有最佳剂量分布情景)。所有药丸都放置在拟人化的头部幻影上,BeOSL探测器用于测量剂量值,以确定其递送时的有效性水平。在扫描过程中,使用热塑性口罩来防止丸子移动并准确地重现临床场景。在Dmax和D50%的剂量值的差异显示了每个丸的性能。3D打印丸剂的治疗计划系统(TPS)和BeOSL读数在2%(临床耐受性)以内,定制3D打印丸剂的剂量差异为0.66%。虽然热塑性丸与探测器读数最接近,得分为0.30%,但这一结果受到丸在假体上形状不当和存在较大气隙的影响,导致眼睛缺乏覆盖。而皮肤丸,由于幻影表面和丸之间的空气体积较大,TPS值与OSL检测器读数之间的剂量差异为1.29%。我们提供了使用3D打印丸的比较验证,并强调适当的丸安装在临床环境中是必不可少的,以避免气隙并在多个治疗过程中保持剂量分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信