Insights into Dermal Permeation of Skin Oil Oxidation Products from Enhanced Sampling Molecular Dynamics Simulation.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Rinto Thomas, Praveen Ranganath Prabhakar, Douglas J Tobias, Michael von Domaros
{"title":"Insights into Dermal Permeation of Skin Oil Oxidation Products from Enhanced Sampling Molecular Dynamics Simulation.","authors":"Rinto Thomas, Praveen Ranganath Prabhakar, Douglas J Tobias, Michael von Domaros","doi":"10.1021/acs.jpcb.4c08090","DOIUrl":null,"url":null,"abstract":"<p><p>The oxidation of human sebum, a lipid mixture covering our skin, generates a range of volatile and semivolatile carbonyl compounds that contribute largely to indoor air pollution in crowded environments. Kinetic models have been developed to gain a deeper understanding of this complex multiphase chemistry, but they rely partially on rough estimates of kinetic and thermodynamic parameters, especially those describing skin permeation. Here, we employ atomistic molecular dynamics simulations to study the translocation of selected skin oil oxidation products through a model stratum corneum membrane. We find these simulations to be nontrivial, requiring extensive sampling with up to microsecond simulation times, in spite of employing enhanced sampling techniques. We identify the high degree of order and stochastic, long-lived temporal asymmetries in the membrane structure as the leading causes for the slow convergence of the free energy computations. We demonstrate that statistical errors due to insufficient sampling are substantial and propagate to membrane permeabilities. These errors are independent of the enhanced sampling technique employed and very likely independent of the precise membrane model.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08090","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The oxidation of human sebum, a lipid mixture covering our skin, generates a range of volatile and semivolatile carbonyl compounds that contribute largely to indoor air pollution in crowded environments. Kinetic models have been developed to gain a deeper understanding of this complex multiphase chemistry, but they rely partially on rough estimates of kinetic and thermodynamic parameters, especially those describing skin permeation. Here, we employ atomistic molecular dynamics simulations to study the translocation of selected skin oil oxidation products through a model stratum corneum membrane. We find these simulations to be nontrivial, requiring extensive sampling with up to microsecond simulation times, in spite of employing enhanced sampling techniques. We identify the high degree of order and stochastic, long-lived temporal asymmetries in the membrane structure as the leading causes for the slow convergence of the free energy computations. We demonstrate that statistical errors due to insufficient sampling are substantial and propagate to membrane permeabilities. These errors are independent of the enhanced sampling technique employed and very likely independent of the precise membrane model.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信