Neddylation of RhoA impairs its protein degradation and promotes renal interstitial fibrosis progression in diabetic nephropathy.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xue-Qi Li, Bo Jin, Si-Xiu Liu, Yan Zhu, Nan Li, Qing-Yan Zhang, Cheng Wan, Yuan Feng, Yue-Xian Xing, Kun-Ling Ma, Jing Liu, Chun-Ming Jiang, Jian Lu
{"title":"Neddylation of RhoA impairs its protein degradation and promotes renal interstitial fibrosis progression in diabetic nephropathy.","authors":"Xue-Qi Li, Bo Jin, Si-Xiu Liu, Yan Zhu, Nan Li, Qing-Yan Zhang, Cheng Wan, Yuan Feng, Yue-Xian Xing, Kun-Ling Ma, Jing Liu, Chun-Ming Jiang, Jian Lu","doi":"10.1038/s41401-024-01460-z","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is a common and serious complication of diabetes, characterized by chronic fibro-inflammatory processes with an unclear pathogenesis. Renal fibrosis plays a significant role in the development and progression of DN. While recent research suggests that the neddylation pathway may influence fibrotic processes, its specific dysregulation in DN and the underlying mechanisms remain largely unexplored. This study identified the neddylation of RhoA as a novel post-translational modification that regulates its expression and promotes renal fibrosis in DN. We here demonstrated that two key components of the neddylation pathway-NEDD8-activating enzyme E1 subunit 1 (NAE1) and NEDD8-are significantly upregulated in human chronic kidney disease (CKD) specimens compared to healthy kidneys, implicating neddylation in CKD-associated fibrosis. Our findings further revealed that both pharmacological inhibition of neddylation using MLN4924 and genetic knockdown of NAE1 mitigate renal fibrosis in mouse models of streptozotocin-induced diabetes and unilateral ureteral obstruction (UUO). Immunoprecipitation-mass spectrometry (IP-MS) and subsequent function assays demonstrated a direct interaction between RhoA and NEDD8. Importantly, neddylation inhibition reduced RhoA protein expression, highlighting a potential therapeutic target. Additionally, a positive correlation was noted between elevated NEDD8 mRNA levels and RhoA mRNA expression in human CKD specimens. RhoA overexpression counteracted the antifibrotic effects of neddylation inhibition, underscoring its critical role in fibrosis progression. Mechanistically, we unveiled that neddylation enhances RhoA protein stability by inhibiting its ubiquitination-mediated degradation, which subsequently activates the ERK1/2 pathway. Collectively, this study provides novel insights into NAE1-dependent RhoA neddylation as a key contributor to renal fibrosis in DN. The NAE1 protein mediates RhoA protein hyper-neddylation and subsequent stabilization of the RhoA protein, which, in turn, contributes to the development of renal fibrosis and inflammation through an ERK1/2-dependent mechanism. Consequently, targeting neddylation inhibition represents a viable therapeutic approach for the treatment of renal fibrosis in DN.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01460-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic nephropathy (DN) is a common and serious complication of diabetes, characterized by chronic fibro-inflammatory processes with an unclear pathogenesis. Renal fibrosis plays a significant role in the development and progression of DN. While recent research suggests that the neddylation pathway may influence fibrotic processes, its specific dysregulation in DN and the underlying mechanisms remain largely unexplored. This study identified the neddylation of RhoA as a novel post-translational modification that regulates its expression and promotes renal fibrosis in DN. We here demonstrated that two key components of the neddylation pathway-NEDD8-activating enzyme E1 subunit 1 (NAE1) and NEDD8-are significantly upregulated in human chronic kidney disease (CKD) specimens compared to healthy kidneys, implicating neddylation in CKD-associated fibrosis. Our findings further revealed that both pharmacological inhibition of neddylation using MLN4924 and genetic knockdown of NAE1 mitigate renal fibrosis in mouse models of streptozotocin-induced diabetes and unilateral ureteral obstruction (UUO). Immunoprecipitation-mass spectrometry (IP-MS) and subsequent function assays demonstrated a direct interaction between RhoA and NEDD8. Importantly, neddylation inhibition reduced RhoA protein expression, highlighting a potential therapeutic target. Additionally, a positive correlation was noted between elevated NEDD8 mRNA levels and RhoA mRNA expression in human CKD specimens. RhoA overexpression counteracted the antifibrotic effects of neddylation inhibition, underscoring its critical role in fibrosis progression. Mechanistically, we unveiled that neddylation enhances RhoA protein stability by inhibiting its ubiquitination-mediated degradation, which subsequently activates the ERK1/2 pathway. Collectively, this study provides novel insights into NAE1-dependent RhoA neddylation as a key contributor to renal fibrosis in DN. The NAE1 protein mediates RhoA protein hyper-neddylation and subsequent stabilization of the RhoA protein, which, in turn, contributes to the development of renal fibrosis and inflammation through an ERK1/2-dependent mechanism. Consequently, targeting neddylation inhibition represents a viable therapeutic approach for the treatment of renal fibrosis in DN.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信