Quantitative Analysis of Neuropeptide Y (NPY) and C-Terminal Glycine-Extended NPY by Mass Spectrometry and Their Localization in the Developing and Sexual Adult Mouse Brains.
{"title":"Quantitative Analysis of Neuropeptide Y (NPY) and C-Terminal Glycine-Extended NPY by Mass Spectrometry and Their Localization in the Developing and Sexual Adult Mouse Brains.","authors":"Tohru Yamagaki, Tomohiro Osugi, Yohei Shinmyo, Hiroshi Kawasaki, Honoo Satake","doi":"10.1021/acschemneuro.4c00545","DOIUrl":null,"url":null,"abstract":"<p><p>Neuropeptide Y (NPY), a central stimulator of food intake and an energy balance controlling hormone, was quantitatively analyzed in developing brains at birth using microflow liquid chromatography (LC) and triple-quadrupole tandem mass spectrometry (MS/MS). We detected and identified endogenous C-terminal glycine-extended NPY (NPY-Gly 1-37) first, an intermediate of NPY before amidation in the mouse brain using high-resolution Fourier-transform Orbitrap MS and MS/MS. NPY-Gly was present in the fetal brain (E16) at almost the same levels as NPY of 1.92 pmol/g-brain tissue. After birth, NPY in postnatal 2-day brains (P2) was elevated drastically at 11.02 pmol/g-brain (<i>p</i> < 0.05 vs E16) and remained at a high level for the first 10 postnatal days, an important period for the formation of the NPY neural circuit in the brain. Immunohistochemistry unexpectedly showed that the localizations of NPY and NPY-Gly in the hypothalamus were completely different: NPY was localized in the arcuate nucleus, whereas NPY-Gly was already located at pars tuberalis during brain development from a fetus to a neonate to a sexual adult.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00545","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuropeptide Y (NPY), a central stimulator of food intake and an energy balance controlling hormone, was quantitatively analyzed in developing brains at birth using microflow liquid chromatography (LC) and triple-quadrupole tandem mass spectrometry (MS/MS). We detected and identified endogenous C-terminal glycine-extended NPY (NPY-Gly 1-37) first, an intermediate of NPY before amidation in the mouse brain using high-resolution Fourier-transform Orbitrap MS and MS/MS. NPY-Gly was present in the fetal brain (E16) at almost the same levels as NPY of 1.92 pmol/g-brain tissue. After birth, NPY in postnatal 2-day brains (P2) was elevated drastically at 11.02 pmol/g-brain (p < 0.05 vs E16) and remained at a high level for the first 10 postnatal days, an important period for the formation of the NPY neural circuit in the brain. Immunohistochemistry unexpectedly showed that the localizations of NPY and NPY-Gly in the hypothalamus were completely different: NPY was localized in the arcuate nucleus, whereas NPY-Gly was already located at pars tuberalis during brain development from a fetus to a neonate to a sexual adult.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research