Enhancing stability and safety: A novel multi-constraint model predictive control approach for forklift trajectory

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Yizhen Sun, Junyou Yang, Donghui Zhao, Moses Chukwuka Okonkwo, Jianmin Zhang, Shuoyu Wang, Yang Liu
{"title":"Enhancing stability and safety: A novel multi-constraint model predictive control approach for forklift trajectory","authors":"Yizhen Sun,&nbsp;Junyou Yang,&nbsp;Donghui Zhao,&nbsp;Moses Chukwuka Okonkwo,&nbsp;Jianmin Zhang,&nbsp;Shuoyu Wang,&nbsp;Yang Liu","doi":"10.1049/csy2.70004","DOIUrl":null,"url":null,"abstract":"<p>The advancements in intelligent manufacturing have made high-precision trajectory tracking technology crucial for improving the efficiency and safety of in-factory cargo transportation. This study addresses the limitations of current forklift navigation systems in trajectory control accuracy and stability by proposing the Enhanced Stability and Safety Model Predictive Control (ESS-MPC) method. This approach includes a multi-constraint strategy for improved stability and safety. The kinematic model for a single front steering-wheel forklift vehicle is constructed with all known state quantities, including the steering angle, resulting in a more accurate model description and trajectory prediction. To ensure vehicle safety, the spatial safety boundary obtained from the trajectory planning module is established as a hard constraint for ESS-MPC tracking. The optimisation constraints are also updated with the key kinematic and dynamic parameters of the forklift. The ESS-MPC method improved the position and pose accuracy and stability by 57.93%, 37.83%, and 57.51%, respectively, as demonstrated through experimental validation using simulation and real-world environments. This study provides significant support for the development of autonomous navigation systems for industrial forklifts.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"6 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The advancements in intelligent manufacturing have made high-precision trajectory tracking technology crucial for improving the efficiency and safety of in-factory cargo transportation. This study addresses the limitations of current forklift navigation systems in trajectory control accuracy and stability by proposing the Enhanced Stability and Safety Model Predictive Control (ESS-MPC) method. This approach includes a multi-constraint strategy for improved stability and safety. The kinematic model for a single front steering-wheel forklift vehicle is constructed with all known state quantities, including the steering angle, resulting in a more accurate model description and trajectory prediction. To ensure vehicle safety, the spatial safety boundary obtained from the trajectory planning module is established as a hard constraint for ESS-MPC tracking. The optimisation constraints are also updated with the key kinematic and dynamic parameters of the forklift. The ESS-MPC method improved the position and pose accuracy and stability by 57.93%, 37.83%, and 57.51%, respectively, as demonstrated through experimental validation using simulation and real-world environments. This study provides significant support for the development of autonomous navigation systems for industrial forklifts.

Abstract Image

提高稳定性和安全性:一种新的多约束模型预测控制方法的叉车轨迹
智能制造的进步使得高精度轨迹跟踪技术成为提高工厂内货物运输效率和安全性的关键。针对当前叉车导航系统在轨迹控制精度和稳定性方面的局限性,提出了增强稳定性与安全模型预测控制(ESS-MPC)方法。该方法包括一个多约束策略,以提高稳定性和安全性。利用已知的所有状态量,包括转向角,建立了单前轮叉车的运动学模型,使模型描述和轨迹预测更加准确。为保证车辆安全,建立轨迹规划模块得到的空间安全边界作为ESS-MPC跟踪的硬约束。优化约束还更新了叉车的关键运动学和动力学参数。通过仿真和现实环境的实验验证,ESS-MPC方法的位姿精度和稳定性分别提高了57.93%、37.83%和57.51%。该研究为工业叉车自主导航系统的开发提供了重要的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信