Chang Liu, Jin Wang, Chang Liu Sr, Jie Wang, Li Tian, Xiao Yu, Min Wei
{"title":"SDOG: Scalable Scheduling of Flows Based on Dynamic Online Grouping in Industrial Time-Sensitive Networks","authors":"Chang Liu, Jin Wang, Chang Liu Sr, Jie Wang, Li Tian, Xiao Yu, Min Wei","doi":"10.1002/nem.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Although many studies have conducted the traffic scheduling of time-sensitive networks, most focus on small-scale static scheduling for specific scenarios, which cannot cope with dynamic and rapid scheduling of time-triggered (TT) flows generated in scalable scenarios in the Industrial Internet of Things. In this paper, we propose a Scalable TT flow scheduling method based on Dynamic Online Grouping in industrial time-sensitive networks (SDOG). To achieve that, we establish an undirected weighted flow graph based on the conflict index between TT flows and divide available time into equally spaced time windows. We dynamically group the TT flows within each window locally. When the number of flows to be scheduled doubles, we can achieve scalable and efficient solutions to efficiently schedule dynamic TT flows, avoiding unnecessary conflicts during data communication. In addition, a topology pruning strategy is adopted to prune the network topology of each group, reducing unnecessary link variables and further effectively shortening the scheduling time. Experimental results validated our expected performance and demonstrated that our proposed SDOG scheduling method has advantages in terms of overall traffic schedulability and average time for scheduling individual traffic.</p>\n </div>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"35 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.70001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Although many studies have conducted the traffic scheduling of time-sensitive networks, most focus on small-scale static scheduling for specific scenarios, which cannot cope with dynamic and rapid scheduling of time-triggered (TT) flows generated in scalable scenarios in the Industrial Internet of Things. In this paper, we propose a Scalable TT flow scheduling method based on Dynamic Online Grouping in industrial time-sensitive networks (SDOG). To achieve that, we establish an undirected weighted flow graph based on the conflict index between TT flows and divide available time into equally spaced time windows. We dynamically group the TT flows within each window locally. When the number of flows to be scheduled doubles, we can achieve scalable and efficient solutions to efficiently schedule dynamic TT flows, avoiding unnecessary conflicts during data communication. In addition, a topology pruning strategy is adopted to prune the network topology of each group, reducing unnecessary link variables and further effectively shortening the scheduling time. Experimental results validated our expected performance and demonstrated that our proposed SDOG scheduling method has advantages in terms of overall traffic schedulability and average time for scheduling individual traffic.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.