Enhancing sustainability and power generation from sewage-driven air-cathode microbial fuel cells through innovative anti-biofouling spacer and biomass-derived anode

IF 2.8 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Radwan A. Almasri, Nasser AM Barakat, Osama M Irfan
{"title":"Enhancing sustainability and power generation from sewage-driven air-cathode microbial fuel cells through innovative anti-biofouling spacer and biomass-derived anode","authors":"Radwan A. Almasri,&nbsp;Nasser AM Barakat,&nbsp;Osama M Irfan","doi":"10.1002/jctb.7776","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Recently, the concept of the membrane-less microbial fuel cell (MFC) has gained traction to avoid the high internal resistance that is created upon utilizing conventional membranes. Nevertheless, an overlooked problem arises from the ingress of oxygen from the cathode side into the anolyte solution, fostering the formation of biofilms by aerobic microorganisms on the cathode surface. This biofilm layer poses a formidable impediment, leading to cell disconnection. Moreover, low surface area of conventional anodes is another important issue behind the low power density generation. In this research, a novel approach to circumvent biofilm formation and achieve stable and high-power-density output from MFCs by harnessing a commercial antibacterial spacer is introduced.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Air-cathode, sewage-driven MFCs showed continuous power generation without the need for external microorganisms. Conversely, the absence of the innovative membrane resulted in a catastrophic power breakdown after 125 h of operation due to the formation of a dense biofilm layer on the cathode. Through the utilization of the proposed membrane strategy, stable power density output of 100 ± 8, 135 ± 11 and 142 ± 10 mW m<sup>−2</sup> with carbon cloth, carbon paper and carbon felt anodes, respectively, was achieved. Moreover, a novel anode is introduced from graphitization of grape tree branches. The proposed anode could increase the generated power to 516 ± 17 mW m<sup>−2</sup> from the sewage-driven air-cathode MFC, more than three times compared to the best conventional anode, carbon felt.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>This study provides significant solutions for sustainability, low-performance and high-cost problems of microbial fuel cells. © 2024 Society of Chemical Industry (SCI).</p>\n </section>\n </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":"100 2","pages":"344-359"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical technology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jctb.7776","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Recently, the concept of the membrane-less microbial fuel cell (MFC) has gained traction to avoid the high internal resistance that is created upon utilizing conventional membranes. Nevertheless, an overlooked problem arises from the ingress of oxygen from the cathode side into the anolyte solution, fostering the formation of biofilms by aerobic microorganisms on the cathode surface. This biofilm layer poses a formidable impediment, leading to cell disconnection. Moreover, low surface area of conventional anodes is another important issue behind the low power density generation. In this research, a novel approach to circumvent biofilm formation and achieve stable and high-power-density output from MFCs by harnessing a commercial antibacterial spacer is introduced.

Results

Air-cathode, sewage-driven MFCs showed continuous power generation without the need for external microorganisms. Conversely, the absence of the innovative membrane resulted in a catastrophic power breakdown after 125 h of operation due to the formation of a dense biofilm layer on the cathode. Through the utilization of the proposed membrane strategy, stable power density output of 100 ± 8, 135 ± 11 and 142 ± 10 mW m−2 with carbon cloth, carbon paper and carbon felt anodes, respectively, was achieved. Moreover, a novel anode is introduced from graphitization of grape tree branches. The proposed anode could increase the generated power to 516 ± 17 mW m−2 from the sewage-driven air-cathode MFC, more than three times compared to the best conventional anode, carbon felt.

Conclusion

This study provides significant solutions for sustainability, low-performance and high-cost problems of microbial fuel cells. © 2024 Society of Chemical Industry (SCI).

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
5.90%
发文量
268
审稿时长
1.7 months
期刊介绍: Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信