Hasan Misaii, Amélie Ponchet Durupt, Hai Canh Vu, Nassim Boudaoud, Patrick Leduc, Yun Xu, Arnaud Caracciolo
{"title":"A Comprehensive Degradation Modeling Comparison From Statistical to Artificial Intelligence Models for Curing Oven Chains","authors":"Hasan Misaii, Amélie Ponchet Durupt, Hai Canh Vu, Nassim Boudaoud, Patrick Leduc, Yun Xu, Arnaud Caracciolo","doi":"10.1002/asmb.2930","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The limitations of physics-based models and the constraints posed by data-driven models have motivated the development of fusion models for degradation modeling. These fusion models are designed to overcome the shortcomings inherent to either type of these models when used in isolation. In reliability analysis, particularly for highly reliable systems or units, the available datasets often exhibit small sample sizes. In such instances, the amount of data may not suffice for training powerful data-driven models, which typically require large datasets. Additionally, physics-based models may fail to capture all relevant information present in the data. This article focuses on addressing small sample-size datasets related to highly reliable systems, exploring various statistical and machine learning models tailored for such datasets, from statistical and AI models to fusion models. Furthermore, to address the challenges of using these models in isolation, a combination approach is presented involving employing simple data-driven models accompanied by essential data preprocessing and a physics-based model. This combination enables the models to capture the majority of pertinent information within the data. Also, a time-windowed multilayer perceptron is adapted to the dataset, showing that a meticulously prepared artificial neural network model might surpass the performance of some robust data-driven and even fusion models.</p>\n </div>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2930","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The limitations of physics-based models and the constraints posed by data-driven models have motivated the development of fusion models for degradation modeling. These fusion models are designed to overcome the shortcomings inherent to either type of these models when used in isolation. In reliability analysis, particularly for highly reliable systems or units, the available datasets often exhibit small sample sizes. In such instances, the amount of data may not suffice for training powerful data-driven models, which typically require large datasets. Additionally, physics-based models may fail to capture all relevant information present in the data. This article focuses on addressing small sample-size datasets related to highly reliable systems, exploring various statistical and machine learning models tailored for such datasets, from statistical and AI models to fusion models. Furthermore, to address the challenges of using these models in isolation, a combination approach is presented involving employing simple data-driven models accompanied by essential data preprocessing and a physics-based model. This combination enables the models to capture the majority of pertinent information within the data. Also, a time-windowed multilayer perceptron is adapted to the dataset, showing that a meticulously prepared artificial neural network model might surpass the performance of some robust data-driven and even fusion models.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.