{"title":"Ethylenediamine Assisted Synthesis of o-Phenylenediamine-Based Red Emissive Carbon Quantum Dots: A Strategy to Improve the Fluorescence Quantum Yield","authors":"Xipeng Dong, Wanqing Li, Xue Chen, Er Zhuo, Zizhuo Zhai, Hongxia Qi, Yu Kang, Pudun Zhang","doi":"10.1002/adom.202402173","DOIUrl":null,"url":null,"abstract":"<p><i>O</i>-phenylenediamine (OPD) is commonly used as a precursor in the preparation of red emissive carbon quantum dots (R-CQDs) due to the sp<sup>2</sup> hybridized structure. However, the low fluorescence quantum yield (QY) of the OPD-based R-CQDs limits its application. Although some efforts have been made, the improvement of QY is still limited. In this paper, a strategy is proposed to improve the QY of OPD-based R-CQDs by introducing ethylenediamine (EDA), which plays a key role as a nitrogen (N) dopant due to its high N content. The molar ratio of OPD to EDA (M<sub>OPD</sub>/M<sub>EDA</sub>), the reaction time (t) and temperature (T), and the amount of concentrated H<sub>2</sub>SO<sub>4</sub> (V<sub>H2SO4</sub>), are optimized. The R-CQDs with QY as high as 32.65% and full width at half maximum (FWHM) emission as narrow as 25 nm are obtained via a hydrothermal procedure under the optimal experimental conditions (i.e., M<sub>OPD</sub>/M<sub>EDA</sub> = 1/3, t = 6 h, T = 180 °C and V<sub>H2SO4</sub> = 4 mL). Such a QY is higher than most of the reported OPD-based R-CQDs. Besides, it is found that concentrated H<sub>2</sub>SO<sub>4</sub> acts as the catalyst in addition to protonation. The enhancement of QY is attributed to the increase of the aromatic N-containing heterocyclic structures (C═N) after the introduction of EDA and catalysis by H<sub>2</sub>SO<sub>4</sub>.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 3","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402173","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
O-phenylenediamine (OPD) is commonly used as a precursor in the preparation of red emissive carbon quantum dots (R-CQDs) due to the sp2 hybridized structure. However, the low fluorescence quantum yield (QY) of the OPD-based R-CQDs limits its application. Although some efforts have been made, the improvement of QY is still limited. In this paper, a strategy is proposed to improve the QY of OPD-based R-CQDs by introducing ethylenediamine (EDA), which plays a key role as a nitrogen (N) dopant due to its high N content. The molar ratio of OPD to EDA (MOPD/MEDA), the reaction time (t) and temperature (T), and the amount of concentrated H2SO4 (VH2SO4), are optimized. The R-CQDs with QY as high as 32.65% and full width at half maximum (FWHM) emission as narrow as 25 nm are obtained via a hydrothermal procedure under the optimal experimental conditions (i.e., MOPD/MEDA = 1/3, t = 6 h, T = 180 °C and VH2SO4 = 4 mL). Such a QY is higher than most of the reported OPD-based R-CQDs. Besides, it is found that concentrated H2SO4 acts as the catalyst in addition to protonation. The enhancement of QY is attributed to the increase of the aromatic N-containing heterocyclic structures (C═N) after the introduction of EDA and catalysis by H2SO4.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.