Haifeng Zhang, Koki Kyo, Mitsuru Hachiya, Hideo Noda
{"title":"Enhancing Predictive Modeling of Chinese Yam Shape Through Bayesian Linear Modeling and Key Diameter Modification","authors":"Haifeng Zhang, Koki Kyo, Mitsuru Hachiya, Hideo Noda","doi":"10.1002/asmb.2921","DOIUrl":null,"url":null,"abstract":"<p>In the development of devices for cutting Chinese yams into chunks for use as seeds, accurately measuring the yam's shape with a simple mechanism is crucial. In our prior study, we introduced a statistical approach for predicting the shape of a Chinese yam based on its key diameters. This method involves organizing sample data, estimating diameters at discrete points along the central axis, and constructing a predictive model based on these estimated diameters. However, the initial predictive model relied on separate regression models for each point, potentially leading to instability. In this article, we enhance our previous approach by incorporating a new step that refines the estimation of regression coefficients through Bayesian linear modeling methods. This modification allows for the simultaneous estimation of regression coefficients, ensuring greater stability in the reconstructed model. Additionally, we modify the method for locating key diameters. To validate the performance of the enhanced approach, we apply it to a set of samples and compare the output of the reconstructed model with that of our initial method. The results demonstrate improved stability and performance, highlighting the efficacy of the refined modeling technique.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2921","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2921","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the development of devices for cutting Chinese yams into chunks for use as seeds, accurately measuring the yam's shape with a simple mechanism is crucial. In our prior study, we introduced a statistical approach for predicting the shape of a Chinese yam based on its key diameters. This method involves organizing sample data, estimating diameters at discrete points along the central axis, and constructing a predictive model based on these estimated diameters. However, the initial predictive model relied on separate regression models for each point, potentially leading to instability. In this article, we enhance our previous approach by incorporating a new step that refines the estimation of regression coefficients through Bayesian linear modeling methods. This modification allows for the simultaneous estimation of regression coefficients, ensuring greater stability in the reconstructed model. Additionally, we modify the method for locating key diameters. To validate the performance of the enhanced approach, we apply it to a set of samples and compare the output of the reconstructed model with that of our initial method. The results demonstrate improved stability and performance, highlighting the efficacy of the refined modeling technique.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.