Enhancing Predictive Modeling of Chinese Yam Shape Through Bayesian Linear Modeling and Key Diameter Modification

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Haifeng Zhang, Koki Kyo, Mitsuru Hachiya, Hideo Noda
{"title":"Enhancing Predictive Modeling of Chinese Yam Shape Through Bayesian Linear Modeling and Key Diameter Modification","authors":"Haifeng Zhang,&nbsp;Koki Kyo,&nbsp;Mitsuru Hachiya,&nbsp;Hideo Noda","doi":"10.1002/asmb.2921","DOIUrl":null,"url":null,"abstract":"<p>In the development of devices for cutting Chinese yams into chunks for use as seeds, accurately measuring the yam's shape with a simple mechanism is crucial. In our prior study, we introduced a statistical approach for predicting the shape of a Chinese yam based on its key diameters. This method involves organizing sample data, estimating diameters at discrete points along the central axis, and constructing a predictive model based on these estimated diameters. However, the initial predictive model relied on separate regression models for each point, potentially leading to instability. In this article, we enhance our previous approach by incorporating a new step that refines the estimation of regression coefficients through Bayesian linear modeling methods. This modification allows for the simultaneous estimation of regression coefficients, ensuring greater stability in the reconstructed model. Additionally, we modify the method for locating key diameters. To validate the performance of the enhanced approach, we apply it to a set of samples and compare the output of the reconstructed model with that of our initial method. The results demonstrate improved stability and performance, highlighting the efficacy of the refined modeling technique.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2921","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2921","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In the development of devices for cutting Chinese yams into chunks for use as seeds, accurately measuring the yam's shape with a simple mechanism is crucial. In our prior study, we introduced a statistical approach for predicting the shape of a Chinese yam based on its key diameters. This method involves organizing sample data, estimating diameters at discrete points along the central axis, and constructing a predictive model based on these estimated diameters. However, the initial predictive model relied on separate regression models for each point, potentially leading to instability. In this article, we enhance our previous approach by incorporating a new step that refines the estimation of regression coefficients through Bayesian linear modeling methods. This modification allows for the simultaneous estimation of regression coefficients, ensuring greater stability in the reconstructed model. Additionally, we modify the method for locating key diameters. To validate the performance of the enhanced approach, we apply it to a set of samples and compare the output of the reconstructed model with that of our initial method. The results demonstrate improved stability and performance, highlighting the efficacy of the refined modeling technique.

Abstract Image

利用贝叶斯线性建模和键径修正加强山药形状预测建模
在将山药切成块状用作种子的设备的开发过程中,用一个简单的机构准确测量山药的形状是至关重要的。在我们之前的研究中,我们介绍了一种基于关键直径的统计方法来预测山药的形状。该方法包括组织样本数据,沿中轴线估计离散点的直径,并基于这些估计的直径构建预测模型。然而,最初的预测模型依赖于每个点的单独回归模型,这可能会导致不稳定。在本文中,我们通过加入一个新的步骤来改进以前的方法,该步骤通过贝叶斯线性建模方法来改进回归系数的估计。这种修改允许同时估计回归系数,确保重建模型更大的稳定性。此外,我们修改了定位键径的方法。为了验证增强方法的性能,我们将其应用于一组样本,并将重建模型的输出与初始方法的输出进行比较。结果表明,该方法的稳定性和性能得到了提高,突出了改进建模技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信